精英家教网 > 高中数学 > 题目详情

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

附:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】(1)14%(2)有99%的把握认为该地区的老年人是否需要帮助与性别有关

【解析】试题分析:(1)根据列联表可知需要帮助的老年人是70人,被调查的人数是500,化简即可;(2)计算比较大小,若是大于表示有的把握,若小于则表示没有的把握.

(1)试题解析:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为=14%;

(2)=

由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数)
(1)求曲线C的普通方程;
(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为 ρsin( ﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在坐标原点,焦点在轴上,离心率,虚轴长为2.

(1)求双曲线的标准方程;

(2)若直线与双曲线相交于两点,( 均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内三个向量:.

(Ⅰ)若,求实数的值;

(Ⅱ)设,且满足,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知标有1~20号的小球20,若我们的目的是估计总体号码的平均值,20个小球号码的平均值.试验者从中抽取4个小球,以这4个小球号码的平均值估计总体号码的平均值,按下面方法抽样(按小号到大号排序):

(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.

(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记f(x)的最大值为A.
(1)求f′(x);
(2)求A;
(3)证明:|f′(x)|≤2A.

查看答案和解析>>

同步练习册答案