精英家教网 > 高中数学 > 题目详情

【题目】如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1 , O2 . 动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1 , O,O2 , B五点共线),记点P运动的路程为x,设y=|O1P|2 , y与x的函数关系为y=f(x),则y=f(x)的大致图象是(

A.
B.
C.
D.

【答案】A
【解析】解:当x∈[0,π]时,y=1,
当x∈[π,2π)时,
= 的夹角为θ,| |=1,| |=2,
∴θ=π﹣x
∴y=|O1P|2=( 2=5﹣4cosθ=5+4cosx,x∈(π,2π),
∴函数y=f(x)的图象是曲线,且为单调递增,
当x∈[2π,4π)时,
= ,设 的夹角为α,| |=2与| |=1,
∴α=2π﹣ x,
∴y=|O1P|2=( 2=5﹣4cosθ=5+4cos x,x∈(2π,4π),
∴函数y=f(x)的图象是曲线,且为单调递减.
故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体A-BCD中,AD平面BCD,BCCD,CD=2,AD=4.MAD的中点,PBM的中点,点Q在线段AC上,且AQ=3QC.

(I)证明:PQ//平面BCD;

(II)若异面直线PQCD所成的角为,二面角C-BM-D的大小为,求cos的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|4x﹣92x+8<0},B={x| },C={x||x﹣2|<4},求A∪B,CUA∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=8x的焦点为F,准线为lP为抛物线上一点,PAlA为垂足.如果直线AF的斜率为-,那么|PF|=(  )

A. 4 B. 8 C. 8 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆F1:(x+ 2+y2=r2和F2:(x﹣ 2+y2=(4﹣r)2(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A,B满足: =0.
(1)求曲线C的方程;
(2)证明直线AB恒经过一定点,并求此定点的坐标;
(3)求△ABM面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x),f'(x)为其导数,且 恒成立,则(
A. f( )> f(
B. f( )>f( )??
C.f(1)<2f( )sin1
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在直三棱柱中,的中点.

(1)求证平面

(2)求直线与平面所成角的正弦值

查看答案和解析>>

同步练习册答案