精英家教网 > 高中数学 > 题目详情
19.旋转曲面$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}+\frac{{z}^{2}}{9}$=1的旋转轴为(  )
A.x轴B.y轴C.z轴D.直线$\frac{x}{3}=\frac{y}{2}=\frac{z}{3}$

分析 旋转曲面的横剖面是圆,找到圆心,以圆心为垂足作横剖面的垂线即为旋转轴.

解答 解:旋转曲面$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}+\frac{{z}^{2}}{9}$=1的x,z的系数相同,平行xoz平面的截面,截几何体的平面是圆面,所以几何体的对称轴y轴.
故选:B.

点评 本题考查旋转曲面的对称轴的求法,考查几何体的特征的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)求值:${(\frac{1}{81})}^{-\frac{1}{4}}$+${(\sqrt{2}-1)}^{0}$+log89×log316;
(2)已知a+a-1=6,求a2+a-2和${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,1),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为-$\frac{5\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,若$\frac{sin2B+sin2C}{sin2A}$=1,则B=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0),最大值为2,函数与直线y=1的交点中,距离最近两点间的距离为$\frac{π}{3}$,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且$f(\frac{π}{2})>f(π)$,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2=b2+c2-$\frac{1}{2}$bc,sinA=2sinB.
(1)求cosA;
(2)求cos(2A-B)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.1,3,6,11,18,29,…按照规律,第7个数应为(  )
A.42B.40C.36D.53

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.点F是椭圆E:$\frac{x^2}{25}+\frac{y^2}{9}=1$的左焦点,过点F且倾斜角是锐角的直线l与椭圆E交于A、B两点,若△AOB的面积为$\frac{9}{2}$,则直线l的斜率是$\frac{{\sqrt{15}}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若点A(2,3)与点B(1,y0)位于直线l:x-2y+5=0的两侧,则y0的取值范围是(3,+∞).

查看答案和解析>>

同步练习册答案