精英家教网 > 高中数学 > 题目详情

如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点E.已知BC=10,AD=4.那么直线CE与以点O为圆心,数学公式为半径的圆的位置关系是


  1. A.
    相离
  2. B.
    相交
  3. C.
    相切
  4. D.
    不确定
A
分析:要判断直线CE与以点O为圆心,为半径的圆的位置关系,只需求得圆心到直线的距离,连接OD交CE于F,根据切线的性质,得到要求的距离即是OF,且发现四边形AEFD是矩形.再根据矩形的性质以及垂径定理和勾股定理,即可求解.
若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
解答:解:连接OD交CE于F,则OD⊥AD.
又BA⊥DA,
∴OD∥AB.
∵OB=OC,
∴CF=EF,
∴OD⊥CE,
则四边形AEFD是矩形,得EF=AD=4.
连接OE.
在直角三角形OEF中,根据勾股定理得OF==3>
即圆心O到CE的距离大于圆的半径,则直线和圆相离.
故选A.
点评:连接过切点的半径是圆中一条常见的辅助线.此题综合运用了切线的性质、平行线等分线段定理、垂径定理的推论以及勾股定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点E.已知BC=10,AD=4.那么直线CE与以点O为圆心,
5
2
为半径的圆的位置关系是 (  )
A、相离B、相交C、相切D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选做题
(A)选修4-1:几何证明选讲
如图,AB是半圆O的直径,延长AB到C,使BC=
3
,CD切半圆于点D,DE⊥AB,垂足为E,若AE:EB=3:1,求DE的长.
(B)选修4-2:矩阵与变换
在平面直角坐标系xOy中,直线y=kx在矩阵
01
10
对应的变换下得到的直线经过点P(4,1),求实数k的值.
(C)选修4-4:坐标系与参数方程
在极坐标系中,已知圆ρ=asinθ(a>0)与直线ρcos(θ+
π
4
)=1
相切,求实数a的值.
(D)选修4-5:不等式选讲
已知a,b,c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是半圆O的直径BC延长线上一点,PT切半圆于点T,TH⊥BC于H,若PT=1,PB+PC=2a,则PH=(  )
精英家教网
A、
2
a
B、
1
a
C、
a
2
D、
a
3

查看答案和解析>>

科目:高中数学 来源:2011年高三数学一轮精品复习学案:2.6 函数应用(解析版) 题型:选择题

如图,BC是半圆O的直径,点D是半圆上一点,过点D作⊙O切线AD,BA⊥DA于点A,BA交半圆于点E.已知BC=10,AD=4.那么直线CE与以点O为圆心,为半径的圆的位置关系是 ( )
A.相离
B.相交
C.相切
D.不确定

查看答案和解析>>

同步练习册答案