分析 利用余弦定理,可得4c2=4a2+|PF1|•|PF2|.根据S△PF1F2=3$\sqrt{3}{a}^{2}$,可得|PF1|•|PF2|=12a2,即可求出双曲线的离心率.
解答 解:由题意,F1(-c,0),F2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理,得:
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos$\frac{π}{3}$
=(|PF1|-|PF2|)2+|PF1|•|PF2|.
即4c2=4a2+|PF1|•|PF2|.
又∵S△PF1F2=3$\sqrt{3}{a}^{2}$.
∴$\frac{1}{2}$|PF1|•|PF2|•sin$\frac{π}{3}$=3$\sqrt{3}{a}^{2}$.
∴|PF1|•|PF2|=12a2.
∴4c2=4a2+12a2,即c=2a.
∴e=$\frac{c}{a}$=2.
故答案为:2.
点评 此题是个中档题.考查双曲线的定义及利用余弦定理解圆锥曲线的焦点三角形,解题过程注意整体代换的方法,简化计算.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com