精英家教网 > 高中数学 > 题目详情
4.已知sin($\frac{π}{2}$+α)=-$\frac{3}{5}$,且α∈(-π,0),则tanα=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.±$\frac{3}{4}$

分析 利用同角三角函数的基本关系、诱导公式,以及三角函数在各个象限中的符号,求得tanα的值.

解答 解:∵sin($\frac{π}{2}$+α)=cosα=-$\frac{3}{5}$,且α∈(-π,0),
∴α∈(-π,-$\frac{π}{2}$),
∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{4}{5}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系、诱导公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{-sin\frac{π}{2}x,-3≤x≤0}\\{|lo{g}_{2}x|.x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+$\frac{1}{{x}_{3}^{2}{x}_{4}}$的取值范围为(  )
A.(-1,+∞)B.(-1,1)C.(-∞,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x-$\frac{1}{x}$.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若tanα=2,tanβ=$\frac{3}{4}$,则tan(α-β)等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M=(x∈N*||x|≤2},N={2,6},则M∩N=(  )
A.{1,2,2,6}B.{1,2,6}C.{2}D.{1,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2)时,f(x)=-x2+2x.记函数g(x)=f(x)-k(x-1),若函数g(x)恰有两个零点,则实数k的取值范围是(  )
A.[1,2)B.[$\frac{4}{3}$,2)C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x+1,x≤0}\end{array}\right.$.
(1)求g[f(-1)]的值;
(2)试判断方程f(x)=g(x)解的个数,并判断其中一个解在区间(0,1)内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,点A(-$\frac{1}{2}$,0),B($\frac{3}{2}$,0),锐角α的终边与单位圆O交于点P.
(Ⅰ)用α的三角函数表示点P的坐标;
(Ⅱ)当$\overrightarrow{AP}$•$\overrightarrow{BP}$=-$\frac{1}{4}$时,求α的值;
(Ⅲ)在x轴上是否存在定点M,使得|$\overrightarrow{AP}$|=$\frac{1}{2}$|$\overrightarrow{MP}$|恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow a=(5,x)$,$|{\overrightarrow a}|=9$,则x=±2$\sqrt{14}$.

查看答案和解析>>

同步练习册答案