精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个结论:
①在△ABC中,若sinA>sinB,则必有cosA<cosB;
②在△ABC中,若a,b,c成等比数列,则角B的取值范围为
③等比数列{an}中,若a3=2,a7=8,则a5=±4;
④等差数列{an}的前n项和为Sn , S10<0且S11=0,满足Sn≥Sk对n∈N*恒成立,则正整数k构成集合为{5,6}
⑤若关于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集为R,则a的取值范围为
其中正确结论的序号是 . (填上所有正确结论的序号).

【答案】①②④
【解析】解:①在△abc中,sinA>sinB,根据正弦定理,根据大边对大角可得A>B,根据余弦的图象,可得cosA<cosB,所以正确;
②根据已知得:b2=ac,由余弦定理可得cosB= = = ,可得B∈ ,所以正确;
③由 ,解得a1=1,q2=2,可得:a5= =4,所以不正确;
④解:∵Sn是等差数列{an}的前n项和,S10<0,且S11=0,
,即 ④,
∴d>0,a6=a1+5d=0,
∴a1到a5都是负数,a6是0,以后各项全是正数.
∵Sn≥Sk对n∈N+恒成立,∴k=5,或k=6.
∴正整数k构成的集合为{5,6}.故正确;
⑤解:设函数f(x)=(a2﹣1)x2﹣(a﹣1)x﹣1.由题设条件关于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集为R.
可得对任意的x属于R.都有f(x)<0.
又当a≠1时,函数f(x)是关于x的抛物线.故抛物线必开口向下,且于x轴无交点.
故满足
故解得﹣ <x<1.
当a=1时.f(x)=﹣1.成立.
综上,a的取值范围为(﹣ ,1].
故不正确.所以答案是:①②④.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求函数的单调区间;

(Ⅱ)方程有3个不同的实根,求实数的取值范围;

(Ⅲ)当时,若对于任意的,都存在,使得,求满足条件的正整数的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线上,且与直线相切于点

1)求圆C的方程;

2)是否存在过点的直线与圆C交于两点,且的面积为O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,已知.

1)试写出

2)设,求证:数列是等比数列;

3)求出数列的前项和为及数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为(
A.10
B.8
C.6
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选拔优秀学生参加广州市高二级数学竞赛.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取了5次,记录如下(单位:分):

甲  83  81  79  95  92 

乙  92  85  75  88  90 

(1)甲乙两人分数的极差分别是多少?并用茎叶图表示这两组数据.

(2)甲乙两人这5次成绩的平均分和方差各是多少?从稳定性的角度考虑,你认为选派哪位学生参加比赛较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.

(1)求证: 平面

(2)求证:平面平面.

(3)若平面,求棱的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知美国苹果公司生产某款iPhone手机的年固定成本为40万美元每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone手机x万只并全部销售完每万只的销售收入为R(x)万美元且R(x)=

(1)写出年利润W(万美元)关于年产量x(万只)的函数解析式;

(2)当年产量为多少万只时苹果公司在该款iPhone手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(3,0),B(0,3)C(cosα,sinα),O为原点.
(1)若 , 求tanα的值;
(2)若 , 求sin2α的值.

查看答案和解析>>

同步练习册答案