精英家教网 > 高中数学 > 题目详情
17.已知sinα+cosα=-$\frac{\sqrt{2}}{4}$,则sinαsin($\frac{π}{2}$+α)等于-$\frac{7}{16}$.

分析 把sinα+cosα=-$\frac{\sqrt{2}}{4}$两边同时平方,再利用同角三角函数关系式得到sinαcosα=-$\frac{7}{16}$,由此利用诱导公式能求出sinαsin($\frac{π}{2}$+α)的值.

解答 解:∵sinα+cosα=-$\frac{\sqrt{2}}{4}$,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{1}{8}$,
∴2sinαcosα=-$\frac{7}{8}$,
∴sinαcosα=-$\frac{7}{16}$,
∴sinαsin($\frac{π}{2}$+α)=sinαcosα=-$\frac{7}{16}$.
故答案为:-$\frac{7}{16}$.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式和诱导公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.中心在原点,焦点在x轴,直线y=x+1与该双曲线所截得的弦长为|PQ|=4,且以PQ为直径的圆过原点,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=loga(x2-2x+3)(a>0,a≠1),当x∈[0,3]时,恒有f(x)>-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈R
(1)函数的最小正周期;
(2)函数单调增区间;
(3)函数的最小值及取得最小值时x的值;
(4)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列双曲线的实轴、虚轴的长,顶点、焦点的坐标和离心率:
(1)x2-8y2=32;
(2)9x2-y2=81;
(3)x2-y2=-4;
(4)$\frac{{x}^{2}}{49}$-$\frac{{y}^{2}}{25}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+ax-4a.
(1)若函数f(x)在(-∞,+∞)上有两个零点,求实数a的取值范围;
(2)若对任意实数x均有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)在它的定义域(-∞,+∞)内具有单调性,且对任意实数x,都有f(f(x)+ex)=1-e,e是自然对数的底数,则f(ln2)的值等于(  )
A.-2B.-1C.1D.1-e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x>y>0,且m=$\frac{1}{2x(x-y)}$,n=${x}^{2}+\frac{1}{xy}$,则m+$\frac{n}{2}$的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Sn为数列{an}的前n项和,a1=1,${S_n}=\frac{n}{n-1}{S_{n-1}}+n$(n≥2,n∈N+).
(1)求{an}的通项公式;
(2)设${c_n}={2^{a_n}}•{a_n}$,求{cn}的前n项和 Tn

查看答案和解析>>

同步练习册答案