精英家教网 > 高中数学 > 题目详情

请先阅读:
在等式)的两边求导,得:
由求导法则,得,化简得等式:
(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:
(2)对于正整数,求证:
(i); (ii); (iii)

(1)证明见解析。
(2)证明见解析。

解析证明:(1)在等式两边对求导得

移项得                (*)
(2)(i)在(*)式中,令,整理得 
所以   
(ii)由(1)知
两边对求导,得
在上式中,令


亦即         (1) 
又由(i)知         (2)
由(1)+(2)得
(iii)将等式两边在上对积分
由微积分基本定理,得
所以 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

请先阅读:
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
n
k=2
k
C
k
n
xk-1

(2)对于正整数n≥3,求证:
(i)
n
k=1
(-1)kk
C
k
n
=0

(ii)
n
k=1
(-1)kk2
C
k
n
=0

(iii)
n
k=1
1
k+1
C
k
n
=
2n+1-1
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

请先阅读:

在等式)的两边求导,得:

由求导法则,得,化简得等式:

(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:

(2)对于正整数,求证:

(i);  (ii);  (iii)

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

请先阅读:

在等式)的两边求导,得:

由求导法则,得,化简得等式:

(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:

(2)对于正整数,求证:

(i);  (ii);  (iii)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年江苏卷)【必做题】.请先阅读:

在等式)的两边求导,得:

由求导法则,得,化简得等式:

(1)利用上题的想法(或其他方法),结合等式 (,正整数),证明:

(2)对于正整数,求证:

(i);  (ii);  (iii)

查看答案和解析>>

同步练习册答案