精英家教网 > 高中数学 > 题目详情
解关于x的方程:log4{2log3[1+3log2x]}=
1
2
考点:函数的零点
专题:函数的性质及应用
分析:直接利用导数的运算法则,化简求解即可.
解答: 解:log4{2log3[1+3log2x]}=
1
2

可得2log3[1+3log2x]=2
即log3[1+3log2x]=1.
所以:1+3log2x=3
所以log2x=
2
3

所以x=2
2
3
点评:本题考查函数的零点,对数的运算法则的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C的两个焦点分别是F1(0,-
6
),F2(0,
6
),且过点M(2,2).
(1)求双曲线C的方程;
(2)若双曲线C上的点P满足PF1⊥PF2,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2,-1≤x≤1
1
x
,x>1
,则
e
-1
f(x)dx=
 
.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

某人根据自己爱好,希望从{W,X,Y,Z}中选2个不同字母,从{0,2,6,8}中选3个不同数字拟编车牌号,要求前三位是数字,后两位是字母,且数字2不能排在首位,字母Z和数字2不能相邻,那么满足要求的车牌号有(  )
A、198个B、180个
C、216个D、234个

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
31π
6
的值是(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对角边分别为a,b,c,B=
π
3
,cosA=
4
5
,b=
3

(1)求sinC的值
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(sinx+cosx)sinx,若f(x1)≤f(x)≤f(x2),对?x∈R成立,则|x1-x2|最小值为(  )
A、
π
8
B、
π
4
C、
π
2
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),若对给定的△ABC,它的三边的长a,b,c均在函数f(x)的定义域内,且f(a),f(b),f(c)也为某三角形的三边的长,则称f(x)是“保三角形函数”,给出下列命题:
①函数f(x)=x2+1是“保三角形函数”;
②函数f(x)=
x
(x>0)是“保三角形函数”;
③若函数f(x)=kx是“保三角形函数”,则实数k的取值范围是(0,+∞);
④若函数f(x)是定义在R上的周期函数,值域为(0,+∞),则f(x)是“保三角形函数”.
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
2x
x-2
<1的解集为
 

查看答案和解析>>

同步练习册答案