精英家教网 > 高中数学 > 题目详情
(2012•宝鸡模拟)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响.
(1)求客人游览2个景点的概率;
(2)设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布及数学期望.
分析:(1)分别记“客人游览甲景点”、“客人游览乙景点”和“客人游览丙景点”为A1,A2,A3,由题设条件知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,则游览两个景点的概率为:P(A1•A2
.
A3
)+P(A1
.
A2
A3)+P(
.
A1
A
2
A3)
,由此能够求出结果.
(2)客人游览的景点数的可能取值为0,1,2,3.相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3.P(ξ=3)=P(A1•A2•A3)+P(
.
A1
.
A2
.
A3
),由此能求出ξ的分布列和数学期望.
解答:解:(1)分别记“客人游览甲景点”、
“客人游览乙景点”和“客人游览丙景点”为A1,A2,A3
由题设条件知A1,A2,A3相互独立,
且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,
则游览两个景点的概率为:
P(A1•A2
.
A3
)+P(A1
.
A2
A3)+P(
.
A1
A
2
A3)

=0.4×0.5×(1-0.6)+0.4×(1-0.5)×0.6+(1-0.4)×0.5×0.6
=0.08+0.12+0.18
=0.38.
(2)客人游览的景点数的可能取值为0,1,2,3.
相应地,客人没有游览的景点数的可能取值为3,2,1,0,
所以ξ的可能取值为1,3.
P(ξ=3)=P(A1•A2•A3)+P(
.
A1
.
A2
.
A3

=0.4×0.5×0.6+(1-0.4)×(1-0.5)×(1-0.6)
=0.24.
P(ξ=1)=1-0.24=0.76.
∴ξ的分布列为:
 ξ  1  3
 P  0.76  0.24
数学期望:Eξ=1×0.76+3×0.24=1.48.
点评:本题考查离散型随机变量的期望和方差,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如下图所示:则函数f(x)的解析式为
f(x)=
2
sin(
π
8
x+
π
4
f(x)=
2
sin(
π
8
x+
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知实数x,y满足不等式组
y≤x
x+y≤2
y≥0
,则目标函数z=x+3y的最大值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)若函数f(x)=
2x,(x<3)
2x-m,(x≥3)
,且f(f(2))>7,则实数m的取值范围为
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的通项公式an等于(  )

查看答案和解析>>

同步练习册答案