精英家教网 > 高中数学 > 题目详情
已知|
a
|=3,|
b
|=1,且
a
b
同向共线,则
a
b
的值是(  )
A、-3B、0C、3D、-3或3
分析:本题考查的知识点是平面向量的数量积运算,由
a
b
同向共线,则
a
b
夹角为0,代入平面向量的数量积公式易得结果.
解答:解:∵
a
b
同向共线,
a
b
=|
a
|•|
b
|cos0=3

故选C.
点评:如果两个非量平面向量平行(共线),则它们的方向相同或相反,此时他们的夹角为0或π.当它们同向时,夹角为0,此时向量的数量积,等于他们模的积;当它们反向时,夹角为π,此时向量的数量积,等于他们模的积的相反数.如果两个向量垂直,则它们的夹角为
π
2
,此时向量的数量积,等于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=3,|
b
|=2,
a
b
的夹角为120°,则|
a
+
b
|
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C所对的边,已知a=
3
,b=3,∠B=
π
3
,则角A等于
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=3,b=4,cosC=
23

(1)求△ABC的面积;
(2)求sin(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=
3
|
b
|=2
3
a
b
=-3,则
a
b
的夹角是
120°
120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=3,|
b
|=2
3
a
⊥(
b
+
a
),则
a
b
上的投影为(  )
A、-3
B、3
C、-
3
3
2
D、
3
3
2

查看答案和解析>>

同步练习册答案