精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)若曲线在点处的切线与轴垂直,求实数的值;

2)若处取得极大值,求实数的取值范围.

【答案】(1);(2

【解析】

1)根据导数的几何意义得,从而求得的值;

2)对5种情况进行讨论,并验证在左边,单调递增,在右边单调递减.

1

由题知

2)由(1)得:

时,

,当

所以单调递增,单调递减,

所以处取得极大值,符合题意;

时,当;当

所以单调递减,单调递增,单调递减,

所以处取得极大值,符合题意;

时,即,当;当

所以单调递增,单调递减,单调递增,

所以处取得极大值,符合题意;

时,上恒成立,

所以上单调递增,不符合题意;

时,当;当

所以单调递增,单调递减,单调递增,不符合题意;

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,,其中.

(1)若函数的图像过点,求实数的值;

(2),试判断函数上的单调性并证明;

(3)设函数若对每一个不小于的实数,都恰有一个小于的实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数,使得上的奇函数,则称是位差值为的“位差奇函数”.

1)判断函数是否为位差奇函数?说明理由;

2)若是位差值为的位差奇函数,求的值;

3)若对任意属于区间中的都不是位差奇函数,求实数满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,的前项和为,且满足.

1)试求数列的通项公式;

2)令的前项和,证明:

3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,其图象上任一点都满足.

①函数一定是偶函数;②函数可能既不是偶函数也不是奇函数;

③函数若是偶函数,则值域是;④函数可以是奇函数;

⑤函数的值域是,则一定是奇函数.

其中正确命题的序号是__________(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是坐标原点,椭圆的左右焦点分别为,点在椭圆上,若的面积最大时且最大面积为.

1)求椭圆的标准方程;

2)直线与椭圆在第一象限交于点,点是第四象限内的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于另一点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]:在直角坐标系中,直线的参数方程为t为参数,),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,已知直线与曲线C交于不同的两点AB

(1)求直线的普通方程和曲线C的直角坐标方程;

(2)P(12),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知平面.

(1) 求证:

(2) 求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆)和双曲线的公共顶点,分为双曲线和椭圆上不同于的动点,且满足,设直线的斜率分别为.

1)求证:点三点共线;

2)求的值;

3)若分别为椭圆和双曲线的右焦点,且,求的值.

查看答案和解析>>

同步练习册答案