【题目】设函数.
(1)若曲线在点处的切线与轴垂直,求实数的值;
(2)若在处取得极大值,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数,,其中.
(1)若函数的图像过点,求实数和的值;
(2)若,试判断函数在上的单调性并证明;
(3)设函数若对每一个不小于的实数,都恰有一个小于的实数,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在实数,使得为上的奇函数,则称是位差值为的“位差奇函数”.
(1)判断函数和是否为位差奇函数?说明理由;
(2)若是位差值为的位差奇函数,求的值;
(3)若对任意属于区间中的都不是位差奇函数,求实数、满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,,的前项和为,且满足().
(1)试求数列的通项公式;
(2)令,是的前项和,证明:;
(3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为,其图象上任一点都满足.
①函数一定是偶函数;②函数可能既不是偶函数也不是奇函数;
③函数若是偶函数,则值域是或;④函数可以是奇函数;
⑤函数的值域是,则一定是奇函数.
其中正确命题的序号是__________(填上所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是坐标原点,椭圆:的左右焦点分别为,,点在椭圆上,若的面积最大时且最大面积为.
(1)求椭圆的标准方程;
(2)直线:与椭圆在第一象限交于点,点是第四象限内的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于另一点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]:在直角坐标系中,直线的参数方程为(t为参数,),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,已知直线与曲线C交于不同的两点A,B.
(1)求直线的普通方程和曲线C的直角坐标方程;
(2)设P(1,2),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、为椭圆()和双曲线的公共顶点,、分为双曲线和椭圆上不同于、的动点,且满足,设直线、、、的斜率分别为、、、.
(1)求证:点、、三点共线;
(2)求的值;
(3)若、分别为椭圆和双曲线的右焦点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com