精英家教网 > 高中数学 > 题目详情

【题目】已知函数= .

(1)若函数处取得极值,求的值,并判断处取得极大值还是极小值.

(2)若上恒成立,求的取值范围.

【答案】(1)见解析;(2).

【解析】试题分析:(1得到并通过求导判断得到处取得极小值;(2上恒成立,令通过分类讨论,得到 所以

试题解析

(1)的定义域是=,由.

时,==

恒成立,==恒成立

上单调递增,又因为

时,单调递减;当时,单调递增.

时,处取得极小值.

(2)由上恒成立

上恒成立.

解法一(将绝对值看成一个函数的整体进行研究):

时,上单调递减,,所以的值域为:,因为,所以的值域为;所以不成立.

时,易知恒成立.,所以上单调递减,在上单调递增.因为,所以,所以,所以上单调递减,在上单调递增.所以,依题意,,所以.

综上:

解法二(求命题的否定所对应的集合,再求该集合的补集):

命题“都成立”的否定是“上有解”

上有解上有解

上有解

.

,所以上单调递增,又,所以无最小值.所以

所以上单调递增,在上单调递减.

所以,所以.

因为上有解时,

所以都成立时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下问题:
①求面积为1的正三角形的周长;
②求键盘所输入的三个数的算术平均数;
③求键盘所输入的两个数的最小数;
④求函数当自变量取时的函数值.
其中不需要用条件语句来描述算法的问题有(  )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形, ,侧面底面.

(1)求证:平面平面

(2)若,且三棱锥的体积为,求侧面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)设为参数,若,求直线的参数方程;

(2)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平面多边形中,四边形为正方形, ,沿着将图形折成图2,其中 的中点.

(1)求证:

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为 ,点A、B分别为其左、右顶点,点F1、F2分别为其左、右焦点,以点A为圆心,AF1为半径作圆A;以点B为圆心,OB为半径作圆B;若直线 被圆A和圆B截得的弦长之比为

(1)求椭圆C的离心率;
(2)己知a=7,问是否存在点P,使得过P点有无数条直线被圆A和圆B截得的弦长之比为 ;若存在,请求出所有的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系 为坐标原点曲线 为参数),在以平面直角坐标系的原点为极点, 轴的正半轴为极轴,有相同单位长度的极坐标系中,直线 .

(Ⅰ)求曲线的普通方程和直线的直角坐标方程;

()求与直线平行且与曲线相切的直线的直角坐标方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得到的频率分布直方图如图所示.

(1)根据图中数据求a的值;
(2)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组各抽取多少名新生?
(3)在(2)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步练习册答案