精英家教网 > 高中数学 > 题目详情
20.下列函数在区间(-∞,0)上是增函数的是(  )
A.f(x)=x2-4xB.g(x)=3x+1C.h(x)=3-xD.t(x)=tanx

分析 分别判断选项中的函数在区间(-∞,0)上的单调性即可.

解答 解:对于A,f(x)=x2-4x=(x-2)2-4,在(-∞,0)上是单调减函数,不满足题意;
对于B,g(x)=3x+1在(-∞,0)上是单调增函数,满足题意;
对于C,h(x)=3-x=${(\frac{1}{3})}^{x}$是(-∞,0)上的单调减函数,不满足题意;
对于D,t(x)=tanx在区间(-∞,0)上是周期函数,不是单调函数,不满足题意.
故选:B.

点评 本题考查了常见的基本初等函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知圆C:(x-3)2+(y-4)2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,则d的取值范围是[32,72].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=3cos(x+φ)-1的图象关于直线x=$\frac{π}{3}$对称,其中φ∈[0,π],则φ的值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若将函数f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{1}&{\sqrt{3}}\end{array}|$的图象向右平移φ(φ>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2$\frac{x+a}{x-1}$(a>0)为奇函数.
(1)求实数a的值;
(2)若x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果函数f(x)=3sin(2x+φ)的图象关于点($\frac{π}{3}$,0)成中心对称(|φ|<$\frac{π}{2}$),那么函数f(x)图象的一条对称轴是(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,$\frac{π}{2}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{7}{3}$C.2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|x2-3x<0},B={x|-2≤x≤2},则A∩B=(  )
A.{x|2≤x<3}B.{x|-2≤x<0}C.{x|0<x≤2}D.{x|-2≤x<3}

查看答案和解析>>

同步练习册答案