精英家教网 > 高中数学 > 题目详情
18.向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

分析 把已知条件代入向量的模长公式计算可得.

解答 解:∵向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角θ=60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,
∴|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}$=$\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$
=$\sqrt{4×{1}^{2}-4×1×2×\frac{1}{2}+{2}^{2}}$=2,
故答案为:2.

点评 本题考查数量积与向量的夹角,涉及向量的模长公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中m∈R,其在点B(1,0)处的切线所对应的函数为g(x)=0.
(1)已知函数f(x)的图象与直线y=k2-2k无公共点,求实数k的取值范围;
(2)已知p≤0,若对任意的x∈[1,2],总有f(x)≥$\frac{(p-2)x}{2}$+$\frac{p+2}{2x}$+2x-x2成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\sqrt{3}$sin2x+cos2x,则(  )
A.f(x)(在(0,$\frac{π}{6}$)单调递增B.f(x)在(-$\frac{π}{3}$,-$\frac{π}{6}$)单调递减
C.f(x)在(-$\frac{π}{6}$,0)单调递减D.f(x)在($\frac{π}{6}$,$\frac{π}{3}$)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$sin({\frac{π}{4}-α})=\frac{5}{13},α∈(0,\frac{π}{4})$,则$\frac{cos2α}{{cos({\frac{π}{4}+α})}}$的值为(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设A=37+C7235+C7433+C763,B=C7136+C7334+C7532+1,则A-B=128.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,4),且 $\overrightarrow{a}$∥(2$\overrightarrow{a}$+$\overrightarrow{b}$),则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中正确的是(  )
A.?x0>0使“ax0>bx0”是“a>b>0”的必要不充分条件
B.命题“?x0∈(0,+∞),lnx0=x0-1”的否定是“?x0∉(0,+∞),lnx0≠x0-1”
C.命题“若x2=2,则x=$\sqrt{2}$或x=-$\sqrt{2}$”的逆否命题是“若x≠$\sqrt{2}$或x≠-$\sqrt{2}$,则x2≠2”
D.若p∨q为真命题,则p∧q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x|+|x-a|.
(Ⅰ)当a=1时,解不等式f(x)≤3;
(Ⅱ)若不等式f(x)>1对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log2(2-x-1).
(1)求f(x)的定义域,值域;
(2)若f(x)<0,求x的值;
(3)判断并证明f(x)的单调性.

查看答案和解析>>

同步练习册答案