精英家教网 > 高中数学 > 题目详情

【题目】正方体ABCD﹣A′B′C′D′中,AB′与A′C′所在直线的夹角为(
A.30°
B.60°
C.90°
D.45°

【答案】B
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系, 设正方体ABCD﹣A′B′C′D′中棱长为1,
则A(1,0,0),B′(1,1,1),A′(1,0,1),C′(0,1,1),
=(0,1,1), =(﹣1,1,0),
设AB′与A′C′所在直线的夹角为θ,
则cosθ= = =
∴AB′与A′C′所在直线的夹角为60°.
故选:B.

【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
R(A∪B);
已知C={x|a<x<a+1},且CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求证:过点有三条直线与曲线相切;

(Ⅱ)当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且成等差数列,,函数

(1)求数列 的通项公式;

(2)设数列满足,记数列的前项和为,试比较 的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数在区间上的最小值;

(Ⅱ)证明:对任意 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,向量 ,函数f(x)=
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动 个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m个正数a1 , a2 , …,am(m≥4,m∈N*)依次围成一个圆圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差为d的等差数列,而a1 , am , am1 , …,ak+1 , ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1 , a2 , …,am的所有项的和Sm
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案