精英家教网 > 高中数学 > 题目详情

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

【答案】(1)非奇非偶函数;理由见解析

(2)

(3)

【解析】

(1)当时,判断为奇函数;当时,取,非奇非偶函数,得到答案.

(2)根据韦达定理得到,代入表达式化简得到答案.

(3)先证明内单调递增,,代入不等式得到答案.

1)当时,是奇函数

时,

是非奇非偶函数

综上所述:时,为奇函数;时,是非奇非偶函数.

2恒成立

3)先证明上是递增函数,设

由(2)可知:是方程的两个实根,

内单调递增

恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,其左、右焦点分别为上顶点为为坐标原点,过的直线交椭圆两点,.

(1)若直线垂直于轴,求的值;

(2)若,直线的斜率为,则椭圆上是否存在一点,使得关于直线成轴对称?如果存在,求出点的坐标;如果不存在,请说明理由;

(3)设直线:上总存在点满足,当的取值最小时,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意都有恒成立,则称函数有一个宽度为的通道.给出下列函数:

; ②; ③; ④

其中在区间上有一个通道宽度为的函数是__________(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),若对于恒成立.

(1)求实数的值;

(2)证明:存在唯一极大值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2016-2018年文科数学全国Ⅱ卷中各模块所占分值百分比大致如图所示:

给出下列结论:

①选修1-1所占分值比选修1-2小;

②必修分值总和大于选修分值总和;

③必修1分值大致为15分;

④选修1-1的分值约占全部分值的.

其中正确的是( )

A. ①②B. ①②③C. ②③④D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华为手机作为华为公司三大核心业务之一,2018年的销售量跃居全球第二名,某机构随机选取了100名华为手机的顾客进行调查,并将这人的手机价格按照,…分成组,制成如图所示的频率分布直方图,其中.

1)求的值;

2)求这名顾客手机价格的平均数(同一组中的数据用该组区间的中间值作代表);

3)利用分层抽样的方式从手机价格在的顾客中选取人,并从这人中随机抽取人进行回访,求抽取的人手机价格在不同区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(I)讨论的单调性;

II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解七班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

1)请将上面的列联表补充完整(不用写计算过程)

2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;

3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求的分布列与期望.

下面的临界值表供参考:

0.15

0.10

0.05[

0.025

0.01

0.005

0.001

2.072

2.70

3.841

5.024

6.635

7.879

10.82

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,且短轴长是长轴长的一半.

(1)求椭圆的方程;

(2)经过点作直线,交椭圆于两点.如果恰好是线段的中点,求直线的方程.

查看答案和解析>>

同步练习册答案