分析 (1)由a1=1,b1=-1可得P1的坐标为(1,-1),只要求出点P2的坐标即可求出过点P1,P2的直线l的方程;
(2)利用数学归纳法进行证明.
解答 (1)解:当n=2时,a2=$\frac{{a}_{1}}{1-4{b}_{1}^{2}}$=$\frac{1}{3}$,b2=a2b1<0,
∴P1(-1,1),P2($\frac{1}{3}$,$\frac{1}{3}$),
故过P1、P2两点的直线l的方程为y-1=-$\frac{1}{2}$(x+1),即x+2y-1=0;
(2)证:①显然P1在直线l上
②假设Pk在直线l上,则ak+2bk-1=0,即ak=1-2bk,
则n=k+1时
ak+1+2bk+1-1=$\frac{{a}_{k}}{1-4{b}_{k}^{2}}$×bk-1=$\frac{{a}_{k}(1+2{b}_{k})}{1-4{b}_{k}^{2}}$-1=$\frac{{a}_{k}}{1-2{b}_{k}}$-1=0,
∴Pk+1在直线l上,
由①②知,对任意n∈N*,点Pn直线l上.
点评 此题考查直线的两点式,关键是求出点P1,P2的坐标;第二问考查数学归纳法,记住其一般步骤:(1)当n=1时,显然成立.(2)假设当n=k时(把式中n换成k,写出来)成立,则当n=k+1时,(这步比较困难,化简步骤往往繁琐,考试时可以直接写结果)该式也成立.由(1)(2)得,原命题对任意正整数均成立.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,2] | B. | [2,+∞) | C. | [0,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m>$\frac{2}{3}$ | B. | m<-2 | C. | 1<m<2 | D. | $\frac{2}{3}$<m<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{8}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.2 | B. | 0.4 | C. | 0.8 | D. | 0.9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com