精英家教网 > 高中数学 > 题目详情
19.已知数列{an}、{bn}满足a1=-1,b1=1,an+1=$\frac{{a}_{n}}{1-4{b}_{n}^{2}}$,bn+1=an+1bn,点Pn的坐标为(an,bn),且点P1、P2在直线l上.
(1)求直线l的方程;
(2)用数学归纳法证明:对任意n∈N*,点Pn(an,bn)在直线l上.

分析 (1)由a1=1,b1=-1可得P1的坐标为(1,-1),只要求出点P2的坐标即可求出过点P1,P2的直线l的方程;
(2)利用数学归纳法进行证明.

解答 (1)解:当n=2时,a2=$\frac{{a}_{1}}{1-4{b}_{1}^{2}}$=$\frac{1}{3}$,b2=a2b1<0,
∴P1(-1,1),P2($\frac{1}{3}$,$\frac{1}{3}$),
故过P1、P2两点的直线l的方程为y-1=-$\frac{1}{2}$(x+1),即x+2y-1=0;
(2)证:①显然P1在直线l上
②假设Pk在直线l上,则ak+2bk-1=0,即ak=1-2bk
则n=k+1时
ak+1+2bk+1-1=$\frac{{a}_{k}}{1-4{b}_{k}^{2}}$×bk-1=$\frac{{a}_{k}(1+2{b}_{k})}{1-4{b}_{k}^{2}}$-1=$\frac{{a}_{k}}{1-2{b}_{k}}$-1=0,
∴Pk+1在直线l上,
由①②知,对任意n∈N*,点Pn直线l上.

点评 此题考查直线的两点式,关键是求出点P1,P2的坐标;第二问考查数学归纳法,记住其一般步骤:(1)当n=1时,显然成立.(2)假设当n=k时(把式中n换成k,写出来)成立,则当n=k+1时,(这步比较困难,化简步骤往往繁琐,考试时可以直接写结果)该式也成立.由(1)(2)得,原命题对任意正整数均成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,定义$\overrightarrow{a}$与$\overrightarrow{b}$的“向量积”:$\overrightarrow{a}$×$\overrightarrow{b}$是一个向量,它的模|$\overrightarrow{a}$×$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|sinθ.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-1,$\sqrt{3}$),则|$\overrightarrow{a}$×$\overrightarrow{b}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)求不等式|x-3|-2|x-1|≥-1的解集;
(Ⅱ)已知a,b∈R*,a+b=1,求证:(a+$\frac{1}{a}$)2+(b+$\frac{1}{b}$)2≥$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)在R上存在导数f′(x),?x∈R,有g(x)=f(x)-$\frac{1}{2}$x2,且f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设命题p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线;命题q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在x轴上的椭圆,若p∧q是真命题,则(  )
A.m>$\frac{2}{3}$B.m<-2C.1<m<2D.$\frac{2}{3}$<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若2asinB=$\sqrt{3}$b,A为锐角,求A的值;
(2)若b=5,c=$\sqrt{5}$,cosC=$\frac{9}{10}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线y=x+2平行,且它的焦点与椭圆$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1的焦点重合,则双曲线的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y均为正实数,则$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$的最大值为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{3}$C.$\frac{8}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某项检验中,检测结果服从正态分布N(4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为(  )
A.0.2B.0.4C.0.8D.0.9

查看答案和解析>>

同步练习册答案