精英家教网 > 高中数学 > 题目详情
函数f(x)=log2(x2-ax+3)在区间上(-∞,1]单调递减,则实数a的取值范围为(  )
A、[2,+∞)
B、[2,4)
C、(2,4)
D、[2,4]
考点:复合函数的单调性
专题:函数的性质及应用
分析:由题意可得t=x2-ax+3在区间上(-∞,1]单调递减且t>0,故有
a
2
≥1
1-a+3>0
,由此求得a的范围.
解答: 解:∵f(x)=log2(x2-ax+3)在区间上(-∞,1]单调递减,
则t=x2-ax+3在区间上(-∞,1]单调递减且t>0,故有
a
2
≥1
1-a+3>0
,求得2≤a<4,
故选:B.
点评:本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+
3
sinxcosx,x∈R
(1)求函数f(x)的最小正周期;
(2)当函数f(x)取得最大值时,求自变量的集合;
(3)用五点法作出函数f(x)在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,2)在直线mx+ny-1=0(mn>0)上,则
1
m
+
2
n
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+x≥2”的否定是(  )
A、?x0∈R,x2+x≤2
B、?x0∈R,x2+x<2
C、?x∈R,x2+x≤2
D、?x∈R,x2+x<2

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=1-i(i是虚数单位),则复数
1
z
的虚部为(  )
A、-
1
2
B、
1
2
C、-
1
2
i
D、
1
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

M=(-1,1),N=[0,2),则M∩N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱柱ABC-A1B1C1中,D为BC上一点,D1为B1C1的中点,A1B∥平面ADC1
(1)证明:A1D1∥平面ADC1
(2)若AA1⊥平面ABC,AA1=3,等边△ABC的面积为4
3
,求平面A1AB与平面ADC1所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线x=
10
3
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值.
(3)当线段MN的长度最小时,在椭圆上有两点T1,T2,使得△T1SB,△T2SB的面积都为
1
5
,求直线T1T2在y轴上的截距.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是等比数列,则数列{an-an+1},{an•an+1}是什么数列?

查看答案和解析>>

同步练习册答案