精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x+3,其中a∈R,函数f(x)有两个极值点x1,x2,且0≤x1<1.
(1)求实数a的取值范围;
(2)设函数φ(x)=f′(x)-a(x-x1),当x1<x<x2时,求证:|φ(x)|<9.

分析 (1)求出函数的导数,根据△>0,求出a的范围,根据根与系数的关系得到-a=x1+$\frac{3{-x}_{1}}{{x}_{1}+1}$,设u=x1+1∈[1,2),得到-a=u-1+$\frac{3-(u-1)}{u}$=u+$\frac{4}{u}$-2确定a的范围即可;
(2)求出φ(x)>0,得到|φ(x)|=φ(x)=x2-${{x}_{1}}^{2}$<${{x}_{2}}^{2}$-${{x}_{1}}^{2}$=-a$\sqrt{{a}^{2}-4a-12}$,根据a的范围证明即可.

解答 解:(1)f′(x)=x2+ax+a+3,
由题可知:x1,x2为f′(x)的两个根,且△=a2-4(a+3)>0,得a>6或a<-2,
而$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=-a,(1)}\\{{x}_{1}{•x}_{2}=a+3,(2)}\end{array}\right.$,
由(1)(2)得:-a=x1+$\frac{3{-x}_{1}}{{x}_{1}+1}$,设u=x1+1∈[1,2),
有-a=u-1+$\frac{3-(u-1)}{u}$=u+$\frac{4}{u}$-2,
而y=u+$\frac{4}{u}$-2在[1,2)上为减函数,
则2<u+$\frac{4}{u}$-2≤3,即2<-a≤3,即-3≤a<-2,
综上,-3≤a<-2.
(2)证明:由0≤x1<1,x1<x<x2,知,
φ(x)=f′(x)-a(x-x1)=(x-x1)(x-x2-a)=x2-${{x}_{1}}^{2}$>0,
|φ(x)|=φ(x)=x2-${{x}_{1}}^{2}$<${{x}_{2}}^{2}$-${{x}_{1}}^{2}$=(x2+x1)$\sqrt{{{(x}_{2}{+x}_{1})}^{2}-{{4x}_{1}x}_{2}}$=-a$\sqrt{{a}^{2}-4a-12}$,
由(1)可知-3≤a<-2,所以0<a2-4a-12≤9,
所以|φ(x)|<9.

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,考查不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P为双曲线右支上一点,M为△PF1F2的内心,满足S${\;}_{△MP{F}_{1}}$=S${\;}_{MP{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$若该双曲线的离心率为3,则λ=$\frac{1}{3}$
(注:S${\;}_{△MP{F}_{1}}$、S${\;}_{MP{F}_{2}}$、S${\;}_{△M{F}_{1}{F}_{2}}$分别为△MPF1、△MPF2、△MF1F2的面积)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在x=1处的切线方程是y=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设抛物线的顶点在原点,其焦点在x轴上,又抛物线上的点A(-1,a)与焦点F的距离为2,则a=(  )
A.4B.4或-4C.-2D.-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合P={a,b,c,d}(a,b,c,d∈{1,2,3,4,5,6,7,8}),则满足条件a+b+c+d=8的事件的概率为0;集合P的元素中含奇数个数的期望为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则∠ABC等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是一个等比数列的第2项、第3项、第4项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{n({a_n}+3)}}$,Sn为数列{bn}的前n项和,是否存在最大的整数t,使得对任意的n均有Sn>$\frac{t}{72}$成立?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列结论:
动点M(x,y)分别到两定点(-3,0)、(3,0)连线的斜率之乘积为$\frac{16}{9}$,设M(x,y)的轨迹为曲线C,F1、F2,分别为曲线C的左、右焦点,则下列说法中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)当x<0时,△F1MF2的内切圆圆心在直线x=-3上;
(3)若∠F1MF2=90°,则${S_{△{F_1}M{F_2}}}$=32;
(4)设A(6,1),则|MA|+|MF2|的最小值为2$\sqrt{2}$;
其中正确的序号是:①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一线性规划问题的可行域为坐标平面上的正八边形ABCDEFGH及其内部(如图),已知目标函数z=3+ax+by(a,b∈R)的最大值只在顶点B处,如果目标函数变成z=3-bx-ay时,最大值只在顶点(  )
A.AB.BC.CD.D

查看答案和解析>>

同步练习册答案