精英家教网 > 高中数学 > 题目详情
在平面直角坐标系上,设不等式组
x>0
y>0
y≤-n(x-4)
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均为整数的点)的个数为an(n∈N*).则a1=
6
6
,经推理可得到an=
6n
6n
分析:由题设知Dn内的整点在直线x=1或x=2或x=3上.记直线y=n(x-5)为l,l与两坐标轴围成的区域内,在直线x=1,x=2和x=3的点即为要找的整点,由a1=6,a2=12,a3=18,…归纳猜想得到an=6n(n∈N*).
解答:解:当n=1时,D1为直角三角形的内部包括斜边上,这时a1=6,

当n=2时,D2为直角三角形的内部包括斜边上,这时a2=12=2×6,

当n=3时,D3为直角三角形的内部包括斜边上,这时a3=18=3×6.

由此可猜想an=6n.
故答案为:6;6n.
点评:本题考查归纳推理,数列的性质和应用,解题时要注意归纳猜想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,阴影是集合P={(x,y)|(x-cosθ)2+(y-sinθ)2=4,0≤θ≤π}在平面直角坐标系上表示的点集,则阴影中间形如“水滴”部分的面积等于(  )
A、π+
3
B、
7
3
π-
3
C、
11
6
π-
3
D、π+2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系上,设不等式组
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均
为整数的点)的个数为an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表达式再用数学归纳法加以证明;
(Ⅱ)设数列{an}的前项和为Sn,数列{
1
Sn
}的前项和Tn
是否存在自然数m?使得对一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)在平面直角坐标系上,设不等式组
x>0
y≥0
y≤-2n(x-3)
(n∈N*)表示的平面区域为Dn,记Dn内的整点(横坐标和纵坐标均为整数的点)的个数为an
(1)求出a1,a2,a3的值(不要求写过程);
(2)证明数列{an}为等差数列;
(3)令bn=
1
anan+1
(n∈N*),求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名二模)在平面直角坐标系上,设不等式组
x>0
y≥0
y≤-2n(x-3)
(n∈N*)表示的平面区域为Dn,记Dn内的整点(横坐标和纵坐标均为整数的点)的个数为an
(1)求数列{an}的通项公式;
(2)若bn+1=2bn+an,b1=-13.求证:数列{bn+6n+9}是等比数列,并求出数列{bn} 的通项公式.

查看答案和解析>>

同步练习册答案