精英家教网 > 高中数学 > 题目详情

αβ、γ为两两不重合的平面,lmn为两两不重合的直线.给出下列四个命题:①若α⊥γ,β⊥γ,则αβ;②若mαnαmβnβ,则αβ;③若αβlα,则lβ;④若αβ=lβ∩γ=m,γ∩α=nl∥γ,则mn.其中真命题个数是 (   )

A.1        B.2        C.3        D.4?


解析:

①显然不对;②要保证mn相交才有αβ,此选项不对;③由面面平行性质定理可知对;④∵l∥γ,β∩γ=mlβ,∴lm,又mα,∴lα,又αβ=ll?β,∴ln.从而lmn,故④对.最后应选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若α∥β,l?α,则l∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中命题正确的是
②④
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

8、设α、β、γ为两两不重合的平面,l、m、n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∥β,l?α,则l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若m?α,n?α,m∥β,n∥β,则α∥β;
②若α∥β,l?α,则l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,则 m∥n;
④若α⊥γ,β⊥γ,则α∥β;
则其中所有正确命题的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∥β,l?α,则l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中正确命题是
③④
③④
 (填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步练习册答案