【题目】如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论中恒成立的个数为( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.
A.1个
B.2个
C.3个
D.4个
【答案】B
【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.(2)由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.(4)由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
综上可知:只有(1)(3)正确.即四个结论中恒成立的个数是2.
故选B.
【考点精析】利用空间中直线与平面之间的位置关系对题目进行判断即可得到答案,需要熟知直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和为Sn .
(Ⅰ)求an;
(Ⅱ)设bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,异面直线AD1与BD所成的角为;若AB的中点为M,DD1的中点为N,则异面直线B1M与CN所成的角为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1的所有棱长均为a,M是BC的中点,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:BC⊥C1M;
(Ⅱ)求二面角A1﹣AB﹣C的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b是正实数,设函数f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1= ,an+1= ,n=1,2,3,…. (Ⅰ)证明:数列{ ﹣1}是等比数列;
(Ⅱ)求数列 { }的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=8x的准线与双曲线 ﹣ =1(a>0,b>0)相交于A、B两点,双曲线的一条渐近线方程是y= x,点F是抛物线的焦点,且△FAB是等边三角形,则该双曲线的标准方程是( )
A. ﹣ =1
B. ﹣ =1
C. ﹣ =1
D. ﹣ =1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com