精英家教网 > 高中数学 > 题目详情
16.在半径为1的圆周上随机选取三点,它们构成一个锐角三角形的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 根据题意,将圆周按逆时针方向依次标记三点为A、B、C,设出弧AB、弧BC与弧CA的长度,得到所有可能的结果构成的平面区域与“三点组成锐角三角形”构成的平面区域,分别算出两个区域的面积再利用几何概型公式加以计算,可得能构成锐角三角形的概率.

解答 解:如图①,按逆时针方向依次标记三点为A、B、C,设弧AB=x,弧BC=y,弧CA=2π-x-y.

依题意,所有可能的结果构成平面区域为:Ω={(x,y)|0<x<2π,0<y<2π,0<2π-x-y<2π}.
事件A=“三点组成锐角三角形”构成的平面区域为:A={(x,y)∈Ω|0<x<π,0<y<π,0<2π-x-y<π}.
分别作出Ω与A中不等式组对应的平面区域,得到两个三角形及其内部区域,如图②所示
∵平面区域Ω的面积为$\frac{1}{2}×2π×2π$=2π2,平面区域A的面积为$\frac{1}{2}×π×π$=$\frac{1}{2}{π}^{2}$,
∴故所求概率为P=$\frac{1}{4}$.
故选:C.

点评 本题给出圆周上的任意三点,求此三点能构成锐角三角形的概率,着重考查了圆内接三角形、二元一次不等式组表示的平面区域和几何概型计算公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,b=$\sqrt{2}$,B=45°,则角A=(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:$|x-\frac{3}{2}|≤\frac{7}{2}$,q:x2-4x+4-m2<0(m<0),若?p是?q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.请在图中用阴影部分表示下面一个集合:((A∩B)∪(A∩C)∩(∁uB∪∁uC)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥底面ABCD,E为棱PA上一点.
(1)求证:BD⊥OE;
(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B是A的非空子集,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C:(x-2)2+(y+m-4)2=1,当m变化时,圆C上的点与原点的最短距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-1),x≥1}\end{array}\right.$则f(-1)=$\frac{1}{2}$;f(2)=1;f(log23)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的有(  )个
(1)棱柱的所有侧棱平行且相等;
(2)直棱柱的侧面是矩形;
(3){平行六面体}⊆{正四棱柱}⊆{长方体}⊆{正方体};
(4)正棱锥的顶点在底面上射影是底面中心;
(5)圆锥的轴截面是等腰三角形;
(6)球的小圆的半径等于球半径.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案