精英家教网 > 高中数学 > 题目详情
设实数x,y满足
x≤y
y≤6-2x
x≥1
,向量
a
=(2x-y,m),
b
=(-1,1),若
a
b
,则实数m的最小值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:根据向量平行的等价条件得到即m=2x-y,作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数m=2x-y的最小值.
解答: 解:∵向量
a
=(2x-y,m),
b
=(-1,1),若
a
b

2x-y
-1
=
m
1

即m=2x-y,
由m=2x-y,得y=2x-m,作出不等式对应的可行域(阴影部分),
平移直线y=2x-m,由平移可知当直线y=2x-m,
经过点A时,直线y=2x-m的截距最大,此时m取得最小值,
x=1
y=6-2x
,解得
x=1
y=4
,即A(1,4).
将A(1,4)坐标代入m=2x-y,得z=2-4=-2,
即目标函数m=2x-y的最小值为-2.
故答案为:-2.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用三角函数求在△ABC中,已知BC=a=6,AC=b=5,AB=c=8,则这个三角形为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给x输入0,y输入1,则下列伪代码程序输出的结果为
 

Read  x,y
While y≤3
y←2x+y 
Print  y
End  while.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有4张卡片,每张卡片上写有一个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片.
(I)若一次从中随机抽取3张卡片,求3张卡片上数字之和不小于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,其上面数字记为a,放回后再随机抽取1张卡片,其上面数字记为b,求关于x的方程x2+2ax+b2=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB为圆O的一条弦,且|AB|=2,则数量积
AB
AO
的值为(  )
A、2B、3
C、4D、与圆的半径有关

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(1+2x+a4x)的定义域为[1,+∞),求实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M、N分别为AC、PD的中点.求证:
(1)MN∥平面ABP;
(2)平面ABP⊥平面APC的充要条件是BP⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点P(-1,0),Q(1,0),直线PG,QG相交于点G,且它们的斜率之积是3,设点G的轨迹为E.
(1)求曲线E的方程;
(2)过定点F(2,0)的直线交曲线E于B,C两点,直线PB、PC分别交直线x=
1
2
于点M,N,试判断以线段MN为直径的圆是否过点F,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ),其中φ为实数,且f(x)≤f(
9
)对x∈R恒成立.记P=f(
3
),Q=f(
6
),R=f(
6
),则P,Q,R的大小关系是(  )
A、R<P<Q
B、Q<R<P
C、P<Q<R
D、Q<P<R

查看答案和解析>>

同步练习册答案