精英家教网 > 高中数学 > 题目详情
3.命题p:?x∈R,2x<3x;命题q:?x∈R,$\sqrt{x}=lo{g}_{\frac{1}{2}}x$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

分析 分别判断出p,q的真假,再判断出复合命题的真假即可.

解答 解:命题p:?x∈R,2x<3x;当x=0时,不成立,是假命题,¬p是真命题;
命题q:?x∈R,$\sqrt{x}=lo{g}_{\frac{1}{2}}x$,画出图象,如图示:

函数y=$\sqrt{x}$和y=${log}_{\frac{1}{2}}^{x}$有交点,即方程有根,是真命题;
故选:B.

点评 本题考查了复合命题的判断问题,考查对数函数、指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若B=2A,且$\frac{b}{a}$∈($\sqrt{2}$,$\sqrt{3}$),则A的取值范围是$(\frac{π}{6},\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f′(x)的偶函数f(x)(x∈R且x≠0)的导函数,f(2)=0且当x>0时,xf′(x)-f(x)>0,则使f(x)<0成立的x的取值范围为(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=$\left\{\begin{array}{l}cosπx{\;}_{\;}x>0\\ f(x+1)x≤0\end{array}$,则$f(\frac{1}{3})+f(-\frac{1}{3})$的值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18. 已知函数f(x)=sin(2x-$\frac{π}{6}$)
(1)用“五点法”在所给的直角坐标系中画出f(x)在[0,π]内的简图.
(2)求函数f(x)的周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,三内角A,B,C对应的边分别为a,b,c,已知A=$\frac{π}{3}$,a=2.
(Ⅰ)求△ABC面积S的最大值;
(Ⅱ)求sinB+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校开设美术、舞蹈、计算机三门选修课,现有四名同学参与选课,且每人限选一门课程,那么不同的选课方法的种数是(  )
A.12B.24C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线方程为(  )
A.$\frac{x^2}{2}$-$\frac{y^2}{8}$=1B.$\frac{x^2}{3}$-$\frac{y^2}{12}$=1C.$\frac{y^2}{3}$-$\frac{x^2}{12}$=1D.$\frac{y^2}{2}$-$\frac{x^2}{8}$=1

查看答案和解析>>

同步练习册答案