精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n项和为Sn,Sn=n2(n∈N*),则①a3=5;②通项公式an=2n-1.

分析 当n=1,a1=S1=1,当n≥2,Sn-1=(n-1)2,Sn=n2(n∈N*),两式相减即可求得an=2n-1,验证a1满足an=2n-1,当n=3,即可求得a3

解答 解:∵Sn=n2(n∈N*),
∴当n=1时,a1=S1=1,
当n≥2,Sn-1=(n-1)2
两式相减:an=2n-1,
当n=1,满足an=2n-1,
综上,an=2n-1,
当n=3,a3=2×3-1=5,
故答案为:①5,②an=2n-1.

点评 本题考查了递推式的应用、等差数列的通项公式,解答本题的关键是利用an=Sn-Sn-1(n≥2)进行解答,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-1.
(1)求证:f(x)≥x;
(2)若存在x0>0,使得对任意的x∈(0,x0),恒有kf(x)<x,求k的范围;
(3)若存在t>0,使得对任意的x∈(0,t),恒有|kf(x)-x|<f2(x),求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求定义域:y=$\sqrt{lo{g}_{\frac{1}{2}}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,类比这些等式,若$\sqrt{7+\frac{a}{b}}$=7$\sqrt{\frac{a}{b}}$(a,b均为正整数),则a+b=55.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,…,依此拆分法可得1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$+$\frac{1}{182}$,其中m,n∈N*,则m-n=(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.我市教育局对某校高中文科数学进行教学调研,从该校文科生中随机抽取40名学生的数学成绩进行统计,将他们的成绩分成六段得到如图所示的频率分布直方图.
(Ⅰ)求这40个学生数学成绩的中位数的估计值;
(Ⅱ)若从数学成绩[80,100)内的学生中任意抽取2人,求成绩在[80,90)中至少有一人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若输入a=3,b=4,则通过如图程序框图输出的结果是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-cx2(c∈R).
(Ⅰ)讨论函数f(x)的零点个数;
(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a=sin22.5°,b=cos22.5°,c=tan22.5°,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

同步练习册答案