精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{8}$D.$\frac{\sqrt{3}}{8}$

分析 由A,B,C成等差数列,可得2B=A+C,结合三角形内角和定理可求B=$\frac{π}{3}$,由2a,2b,2c成等比数列,得b2=ac,进而利用余弦定理得(a-c)2=0,可求A=C=B=$\frac{π}{3}$,利用特殊角的三角函数值即可计算得解.

解答 解:由A,B,C成等差数列,有2B=A+C,(1)
∵A,B,C为△ABC的内角,∴A+B+C=π,(2).
由(1)(2)得B=$\frac{π}{3}$.
由2a,2b,2c成等比数列,得b2=ac,
由余弦定理得,b2=a2+c2-2accosB,
把B=$\frac{π}{3}$、b2=ac代入得,a2+c2-ac=ac,
即(a-c)2=0,则a=c,从而A=C=B=$\frac{π}{3}$,
∴sinAcosBsinC=$\frac{\sqrt{3}}{2}×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{3}{8}$.
故选:C.

点评 本题主要考查了等差数列,等比数列的性质,三角形内角和定理,余弦定理,特殊角的三角函数值在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设两条直线x+y-2=0,3x-y-2=0的交点为M,若点M在圆(x-m)2+y2=5内,则实数m的取值范围为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且${a_n}=\sqrt{{S_{2n-1}}}({n∈{N^*}})$.若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{n+8}{n}$对任意n∈N*恒成立,则实数λ的最大值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,若E为AB的中点,则点E到面ACD1的距离是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知P(0,-1)是椭圆C的下顶点,F是椭圆C的右焦点,直线PF与椭圆C的另一个交点为Q,满足$\overrightarrow{PF}=7\overrightarrow{FQ}$.
(1)求椭圆C的标准方程;
(2)如图,过左顶点A作斜率为k(k>0)的直线l交椭圆C于点D,交y轴于点B.已知M为AD的中点,是否存在定点N,使得对于任意的k(k>0)都有OM⊥BN,若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{dn}的前n项和${S_n}={n^2}+n$,且d2,d4为等比数列数列{an}的第2、3项.
(1)求{an}的通项方式;
(2)设${b_n}=\frac{n}{a_n}$,求证:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局.第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过.那么F在第一天参加的比赛局数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-a•sin(x-1),其中a∈R.
(Ⅰ)如果曲线y=f(x)在x=1处的切线的斜率是-1,求a的值;
(Ⅱ)如果f(x)在区间(0,1)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集U=R,集合A={x|-3<x≤2},B={x|x>1}.
(1)求A∩B,A∪(∁RB);
(2)已知集合C={x|2x+m<1},若A∩B⊆C,求实数m的取值范围.

查看答案和解析>>

同步练习册答案