精英家教网 > 高中数学 > 题目详情
19.已知∠ABC=90°,BC∥平面α,AB与平面α斜交,那么∠ABC在平面α内的射影是(  )
A.锐角B.直角
C.锐角或直角D.锐角或直角或钝角

分析 根据题意,画出图形,结合图形即可得出正确的结论.

解答 解:∠ABC=90°,BC∥平面α,AB与平面α斜交,如图所示:

在平面α内过点B作BB′⊥平面α,作B′C′∥BC,连接B′A,
则∠AB′C′是∠ABC在平面α内的射影,
且B′C′⊥B′A,
所以∠AB′C′是直角.
故选:B.

点评 本题考查了空间中的直线在平面中的投影的应用问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.到两个定点(0,-8),(0,8)的距离之和等于24的点的轨迹方程为$\frac{{y}^{2}}{144}+\frac{{x}^{2}}{80}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足$\frac{a_1}{9}+\frac{a_2}{7}+\frac{a_3}{5}+…+\frac{a_n}{11-2n}$=n
(1)求数列{an}的通项公式;   
(2)求数列{|an|}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在四面体S-ABC中,SA=8,SB=10,SC=AB=BC=CA=6,A′,B′,C′分别是棱SA,SB,SC上的点,且SA′=2,SB′=2.5,SC′=4,则截面A′B′C′将四面体S-ABC分成的两部分体积之比为(  )
A.$\frac{1}{24}$B.$\frac{1}{23}$C.$\frac{1}{9}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x∈R+,函数f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),若x∈[1,2]时,f(x)=(x-1)(x-2),则函数y=f(x)+$\frac{1}{4}$在区间[1,100]内零点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作出下列函数一个周期的图象,并指出振幅、周期和初相:
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$);
(3)y=$\sqrt{3}$sin2x+cos2x;
(4)y=cosx+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆E的焦点在坐标轴上,对称中心为原点,直线l:x-2y+2=0过椭圆E的一个焦点F1和一个顶点B,则椭圆E的离心率为(  )
A.$\frac{1}{5}$或$\frac{2}{5}$B.$\frac{1}{5}$或$\frac{\sqrt{5}}{5}$C.$\frac{2}{5}$或$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$或$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2A+cos2C-$\sqrt{3}$sinAsinC=1+cos2B.
(Ⅰ)求B;
(Ⅱ)设函数f(x)=$\sqrt{3}$sinxcosx-cos2x(x∈R),求f(A)的取值范围.

查看答案和解析>>

同步练习册答案