精英家教网 > 高中数学 > 题目详情

【题目】已知函数

时,求函数的最小值;

若对任意,恒有成立,求实数m的取值范围.

【答案】(1)1 ; (2) .

【解析】

(1)求出函数的导数,根据导数判断函数的单调区间,进而求出函数的最小值;

(2)要证,只需证明ex≥ln(x+m)+1成立即可,分情况讨论,采用分离参数法,构造新函数,利用导数求得符合条件的m的取值范围,进而问题得解.

(1)当时,,则

,得

时,;当时,

∴函数在区间上单调递减,在区间上单调递增.

∴当时,函数取得最小值,其值为

(2)由(1)得:恒成立.

①当恒成立时,即恒成立时,条件必然满足.

,则,在区间上,是减函数,在区间上,是增函数,即最小值为

于是当时,条件满足.

②当时,,即,条件不满足.

综上所述,m的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产一种产品,根据预测可知,该产品的产量平稳增长,记2015年为第1年,第x年与年产量(万件)之间的关系如下表所示:

x

1

2

3

4

4.00

5.52

7.00

8.49

现有三种函数模型:

1)找出你认为最适合的函数模型,并说明理由,然后选取这两年的数据求出相应的函数解析式;

2)因受市场环境的影响,2020年的年产量估计要比预计减少30%,试根据所建立的函数模型,估计2020年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数.

1)写出的函数关系式;

2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

1)求证:ACSD

2)若SD⊥平面PAC,求二面角P-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

年龄x

28

32

38

42

48

52

58

62

收缩压单位

114

118

122

127

129

135

140

147

其中:

请画出上表数据的散点图;

请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程的值精确到

若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg70岁的老人,属于哪类人群?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的定义域;

2)判断的奇偶性;

3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面为等边三角形,,点的中点.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且当时,..给出下列关于函数的说法:①当时,;②函数为奇函数;③函数上为增函数;④函数的最小值为,无最大值.其中正确的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知a,b,N都是正数,a≠1,b≠1,证明对数换底公式:logaN=

(2)写出对数换底公式的一个性质(不用证明),并举例应用这个性质

查看答案和解析>>

同步练习册答案