精英家教网 > 高中数学 > 题目详情
8.已知α,β∈(0,$\frac{π}{2}$),且满足sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,则α+β的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

分析 根据αβ的取值范围,利用同角三角函数的基本关系分别求得cosα和sinβ,由两角和的余弦公式求得cos(α+β),则α+β的值可求.

解答 解:由α,β∈(0,$\frac{π}{2}$),sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,
∴cosα>0,sinβ>0,
cosα=$\sqrt{1-si{n}^{2}α}=\sqrt{1-(\frac{\sqrt{10}}{10})^{2}}=\frac{3\sqrt{10}}{10}$,
sinβ=$\sqrt{1-co{s}^{2}β}=\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}=\frac{\sqrt{5}}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ
=$\frac{3\sqrt{10}}{10}×\frac{2\sqrt{5}}{5}-\frac{\sqrt{10}}{10}×\frac{\sqrt{5}}{5}=\frac{\sqrt{2}}{2}$,
由α,β∈(0,$\frac{π}{2}$)可得0<α+β<π,
∴α+β=$\frac{π}{4}$.
故选:A.

点评 本题考查三角函数值的求法,两角和差的余弦公式,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若圆x2+y2=4与圆(x-t)2+y2=1外切,则实数t的值为±3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y={(\frac{1}{2})^{{x^2}-2}}$的值域是(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$-2$\overrightarrow{b}$等于(  )
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在矩形ABCD中,AB=3,BC=2,若点E为BC的中点,点F在CD上,$\overrightarrow{AB}$•$\overrightarrow{AF}$=6,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的值为-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>1)}\\{{x}^{2}+1(x≤1)}\end{array}\right.$,则f(f(1))的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知向量$\overrightarrow{m}$=(1,-1),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求x的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\frac{1}{3}a{x}^{3}+\frac{1}{2}b{x}_{2}+cx(a,b,c∈R,a≠0)$的图象在点(x,f(x))处的切线的斜率为k(x),且函数g(x)=k(x)-$\frac{1}{2}x$为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式k(x)$≤\frac{1}{2}{x}^{2}+\frac{1}{2}$恒成立.
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)设函数h(x)=lnx${\;}^{2}-(2m+3)x+\frac{12f(x)}{x}(x>0)$的两个极值点x1,x2(x1<x2)恰为φ(x)=lnx-sx2-tx的零点.当m$≥\frac{3\sqrt{2}}{2}$时,求y=(x1-x2)φ′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

同步练习册答案