精英家教网 > 高中数学 > 题目详情
5.下列函数中,是奇函数且在(0,+∞)上单调递增的为(  )
A.y=x2B.$y={x^{\frac{1}{3}}}$C.y=x-1D.$y={x^{-\frac{1}{2}}}$

分析 判断函数的奇偶性以及函数的单调性即可推出结果.

解答 解:y=x2是偶函数,不成立;
$y={x}^{\frac{1}{3}}$是奇函数在(0,+∞)上单调递增,所以B成立.
C、D两个选项的函数都是减函数,
故选:B.

点评 本题考查函数的奇偶性以及函数的单调性的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的长半轴长为2,离心率为$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的方程;
(2)直线y=kx+2与椭圆C交于A,B两个不同点,点E(1,0)在以AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(3,-5),B(1,-7),则线段AB的中点的坐标是(2,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{m}$=(3sinx,cosx),$\overrightarrow{n}$=(-cosx,$\sqrt{3}$cosx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{\sqrt{3}}{2}$.
(I)求函数f(x)的最大值及取得最大值时x的值;
(Ⅱ)若方程f(x)=a在区间[0,$\frac{π}{2}$]上有两个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=x2-2x+4,x∈[0,2]的值域为[3,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>0,b>0,若a+b=4,则(  )
A.a2+b2有最小值B.$\sqrt{ab}$有最小值C.$\frac{1}{a}+\frac{1}{b}$有最大值D.$\frac{1}{{\sqrt{a}+\sqrt{b}}}$有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在递增等差数列{an}中,a3=1,a4是a3和a7的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求该数列的前10项的和S10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知OA,OB,OC交于点O,$AD\underline{\underline{∥}}\frac{1}{2}OB$,E,F分别为BC,OC的中点.求证:DE∥平面AOC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15. 已知正方体ABCD-A1B1C1D1的棱长为2a,E为CC1的中点,F为B1C1的中点.
(1)求证;BD⊥A1E;
(2)求证:平面A1BD⊥平面EBD;
(3)求证:平面A1BF⊥平面A1BD.

查看答案和解析>>

同步练习册答案