精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,过顶点的直线与椭圆相交于两点.

1)求椭圆的方程;

2)若点在椭圆上且满足,求直线的斜率的值.

【答案】(1);2.

【解析】

(1)因为e=,b=1,所以a=2,

故椭圆方程为. 4

(2)l的方程为y=kx+1,A(x1,y1),B(x2,y2),M(m,n).

联立,解得 (1+4k2)x2+8kx=0

因为直线l与椭圆C相交于两点,所以△=(8k)2>0,所以x1+x2=x1×x2=0

M在椭圆上,则m2+4n2=4,∴,化简得

x1x2+4y1y2= x1x2+4(kx1+1)(kx2+1)= (1+4k2)x1x2+4k(x1+x2)+4=0,

∴4k·()+4=0,解得k=±.故直线l的斜率k=±.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1) ,求的最小值;

(2) 上单调递增,求的取值范围;

(3) 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,四边形ABCD是直角梯形,底面,,,的中点.

(1)求证:平面平面

(2)若与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于分为“成绩优良”.

1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

2)从甲、乙两班个样本中,成绩在分以下(不含分)的学生中任意选取人,求这人来自不同班级的概率.

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,点上.

(1)求椭圆的方程;

(2)若直线与椭圆相交于两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地某所高中2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如图所示:则下列结论正确的(

A.2016年相比,2019年一本达线人数有所减少

B.2016年相比,2019年二本达线人数增加了1

C.2016年相比,2019年艺体达线人数相同

D.2016年相比,2019年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2xa|+|x1|

(1)若f1≥2,求实数a的取值范围

(2)若不等式fxx对任意x[2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;

2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;

3)在(2)的条件下,该单位从行走步数大于150003组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150170]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB为地面,CDCE为路灯灯杆,CDAB,∠DCE=,在E处安装路灯,且路灯的照明张角∠MEN=.已知CD=4mCE=2m.

(1)MD重合时,求路灯在路面的照明宽度MN

(2)求此路灯在路面上的照明宽度MN的最小值.

查看答案和解析>>

同步练习册答案