精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若BC=2,A=120°,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

分析 由$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,⇒4=AC2+AB2-2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB,$\overrightarrow{AB}$•$\overrightarrow{CA}$=AC•ABcos120°即可

解答 解:∵$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,∴$(\overrightarrow{BC})^{2}=(\overrightarrow{AC}-\overrightarrow{AB})^{2}$⇒4=AC2+AB2-2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB≤$\frac{4}{3}$
∴$\overrightarrow{AB}$•$\overrightarrow{CA}$=AC•ABcos120°≤$\frac{2}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值为 $\frac{2}{3}$,
故选:A.

点评 考查向量减法的几何意义,数量积的运算及其计算公式,涉及了不等式a2+b2≥2ab的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=loga$\frac{x-2a}{x+2a}$,g(x)=loga(x+2a)+loga(4a-x),其中a>0,且a≠1.
(1)求f(x)的定义域,并判断f(x)的奇偶性;
(2)已知区间D=[2a+1,2a+$\frac{3}{2}$]满足3a∉D,设函数h(x)=f(x)+g(x),h(x)的定义域为D,若对任意x∈D,不等式|h(x)|≤2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-5x-6≤0,命题q:x2-2x+1-4a2≤0(a>0),若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.$\sqrt{10}$B.10C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,a2+a4=20,a3+a5=40,则a6=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F为双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为$\frac{32}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若l∥α,m∥α,则l∥mB.若l⊥m,m?α,则l⊥αC.若l∥α,m?α,则l∥mD.若l⊥α,l∥m,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,则四边形ABCD绕AD旋转一周所成几何体的表面积为(  )
A.(60+4$\sqrt{2}$)πB.(60+8$\sqrt{2}$)πC.(56+8$\sqrt{2}$)πD.(56+4$\sqrt{2}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在坐标原点,一个焦点的坐标为$(\sqrt{3},0)$,椭圆C经过点P$(1,\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程; 
(2)设直线y=kx+b与椭圆C交于A,B两点,若|AB|=2,△AOB的面积S=1,求直线AB的方程.

查看答案和解析>>

同步练习册答案