精英家教网 > 高中数学 > 题目详情

【题目】设有下面四个命题:

:若,则

:若,则

:若,则

:若,则

其中的真命题为( )

A. B. C. D.

【答案】C

【解析】分析:根据x﹣1时,x2+1>2,得出(x2+1)<﹣1,判断的正误;

根据2sin(α﹣β)=3sin(α+β)=1,求得sinαcosβ的值,判断的正误.

详解:对于命题:若x﹣1,则>2,

<﹣1,∴错误;

对于命题:若2sin(α﹣β)=3sin(α+β)=1,

则2sinαcosβ﹣2cosαsinβ=1…①,

3sinαcosβ+3cosαsinβ=1 …②,

①②解得sinαcosβ=正确;

对于命题:若x﹣1,则x2+1>2,

(x2+1)<﹣1,∴正确;

对于命题:若2sin(α﹣β)=3sin(α+β)=1,

则2sinαcosβ﹣2cosαsinβ=1…①,

3sinαcosβ+3cosαsinβ=1 …②,

①②解得sinαcosβ=错误.

综上,正确的命题是

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,点为边的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,,不在轴上的动点满足于点的中点。

(1)求点的轨迹的方程;

(2)设曲线轴正半轴的交点为,斜率为的直线交两点,记直线的斜率分别为,试问是否为定值?若是,求出该定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前项和。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8 513尾鱼苗,根据概率的统计定义解答下列问题:

(1)这种鱼卵的孵化率(孵化概率)是多少?

(2)30 000个鱼卵大约能孵化多少尾鱼苗?

(3)要孵化5 000尾鱼苗,大概需要多少个鱼卵?(精确到百位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足, 已知轴重合时, .

1)求椭圆的方程;

2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,

说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》节目组决定把《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有_____________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3200元时,可全部租出。当每辆车的月租金每增加50元时(租金增减为50元的整数倍),未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)设租金为(3200+50x)元/辆(xN),用x表示租赁公司的月收益y(单位:元)。

(3)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步练习册答案