【题目】设向量 =(sinx,cosx), =(cosx,sinx),x∈R,函数f(x)= ( ﹣ ).
(1)求函数f(x)的最小正周期;
(2)当x∈[- , ]时,求函数f(x)的值域.
【答案】
(1)解: , ;
∴
=sinx(sinx﹣cosx)+cosx(cosx﹣sinx)
=sin2x﹣sinxcosx+cos2x﹣sinxcosx
=1﹣sin2x;
∴ ;
即f(x)的最小正周期为π
(2)解: 时, ;
∴﹣1≤sin2x≤1;
∴0≤1﹣sin2x≤2;
∴f(x)的值域为[0,2]
【解析】(1)可求出向量 的坐标,从而进行向量数量积的坐标运算即可求出 ,并化简便可得出f(x)=1﹣sin2x,从而由周期的计算公式即可求出函数f(x)的最小正周期;(2)可根据x的范围求出2x的范围,根据正弦函数的图象便可求出sin2x的范围,进一步得出1﹣sin2x的范围,即f(x)的范围,即得出f(x)的值域.
科目:高中数学 来源: 题型:
【题目】若椭圆 + =1的焦点在x轴上,过点(1, )作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若( + ) =0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形;
其中正确命题的个数是( )
A..1
B..2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且, 为自然对数的底数).
(1)若曲线在点处的切线斜率为0,且有极小值,
求实数的取值范围.
(2)当 时,若不等式: 在区间内恒成立,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分. 求:
(1)直线l的方程;
(2)以O为圆心且被l截得的弦长为 的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O是坐标原点,两定点A,B满足| |=| |= =2,则点集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的区域的面积是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com