精英家教网 > 高中数学 > 题目详情
双曲线
x2
4
-
y2
12
=1的两条渐近线与右准线围成的三角形的面积为
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:求出双曲线的渐近线方程和右准线方程,求得交点,再由三角形的面积公式,即可计算得到.
解答: 解:双曲线
x2
4
-
y2
12
=1的渐近线方程为y=±
3
x,
右准线方程为x=
a2
c
即为x=1,
解得渐近线与右准线的交点为(1,
3
),(1,-
3
),
则围成的三角形的面积为
1
2
×1×2
3
3

故答案为:
3
点评:本题考查双曲线的方程和性质,考查渐近线方程和准线方程的运用,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3•2x-1,x<2
log3(x2-1),x≥2
,则f(f(2))=
 
;若f(a)=3,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD的三个顶点的坐标分别为A(2,3)、B(-2,1)、C(4,5),求此梯形中位线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数fM(x)的定义域为R,且定义如下:fM(x)=
1,x∈M
0,x∉M
(其中M为非空数集且M?R),若A,B是实数集R的两个非空真子集且满足A∩B≠∅,则函数F(x)=
fA∪B(x)+fA∩B(x)
fA(x)+fB(x)+1
的值域为(  )
A、{0,
1
2
}
B、{0,1}
C、{0,
2
3
,1}
D、{0,
1
2
2
3
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-[x]x≥0
f(x+1)x<0
,其中[x]表示不超过x的最大整数(如[-1.1]=-2,[π]=3,…).则函数y=f(x)与函数y=log3|x|的图象交点个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos(2x+φ),若对任意x1,x2∈[a,b],(x1-x2)(f(x1)-f(x2))≤0,则b-a的最大值为(  )
A、π
B、
π
4
C、
π
2
D、与φ有关

查看答案和解析>>

科目:高中数学 来源: 题型:

α的终边在x轴下方,则角α的集合用区间表示为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
lnx
,g(x)=f(x)-mx(m∈R),
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)若函数g(x)在(1,+∞)上单调递减,求实数m的取值范围;
(Ⅲ)若存在x1,x2∈[e,e2],使m≥g(x1)-g′(x2)成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(α-
π
2
)cos(
2
-α)tan(7π-α)
tan(-α-5π)sin(α-3π)

(1)化简f(α);
(2)若tanα=
1
2
,求f(α)的值.

查看答案和解析>>

同步练习册答案