精英家教网 > 高中数学 > 题目详情
(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=
3
b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=6,b+c=8,求△ABC的面积.
分析:(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;
(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.
解答:解:(Ⅰ)由2asinB=
3
b,利用正弦定理得:2sinAsinB=
3
sinB,
∵sinB≠0,∴sinA=
3
2

又A为锐角,
则A=
π
3

(Ⅱ)由余弦定理得:a2=b2+c2-2bc•cosA,即36=b2+c2-bc=(b+c)2-3bc=64-3bc,
∴bc=
28
3
,又sinA=
3
2

则S△ABC=
1
2
bcsinA=
7
3
3
点评:此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江二模)对数函数y=logax(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则(  )

查看答案和解析>>

同步练习册答案