精英家教网 > 高中数学 > 题目详情
6.函数y=sin($\frac{π}{2}$x+φ)(|φ|<$\frac{π}{2}$)的部分图象如图所示,其中P是图象的最高点,A、B是图象与x轴的交点,则tan∠APB=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{1}{2}$

分析 过P作x轴垂线,交x轴于D,根据图象求解出AB,和PB,PA的长度吗,利用余弦定理求解cos∠APB,sin∠APB,可得tan∠APB.

解答 解:由题意函数y=sin($\frac{π}{2}$x+φ),可得BC=T=$\frac{2π}{\frac{π}{2}}=4$,
∵P是图象的最高点,过P作x轴垂线,交x轴于D,
∴AD=1,AB=2,DP=1,
∴AP=$\sqrt{2}$,BP=$\sqrt{10}$,
由余弦定理可得cos∠APB=$\frac{B{P}^{2}+A{P}^{2}-A{B}^{2}}{2BP•AP}$=$\frac{2\sqrt{5}}{5}$,
则sin∠APB=$\sqrt{1-co{s}^{2}∠APB}$=$\frac{\sqrt{5}}{5}$,
则tan∠APB=$\frac{sin∠APB}{cos∠APB}=\frac{\sqrt{5}}{5}×\frac{5}{2\sqrt{5}}=\frac{1}{2}$.
故选D

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,以及余弦定理相结合的计算.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log3(x+1)的解集是(  )
A.{x|-1≤x≤2}B.{x|-1<x≤2}C.{x|-1<x≤0}D.{x|-1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.f(x)的一个对称中心为$(\frac{4π}{3},0)$B.f(x)的图象关于直线$x=-\frac{1}{12}π$ 对称
C.f(x)在$[-π,-\frac{π}{2}]$上是增函数D.f(x)的周期为$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正三棱锥V-ABC中,VB=$\sqrt{7}$,BC=2$\sqrt{3}$,则二面角V-AB-C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{xln\frac{1}{|x|}}{|x|}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平面直角坐标系xOy中,圆C方程为x2+y2+2x-2y-2=0,过点A(0,3)的直线l被圆截得的弦EF长为2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与圆(x+1)2+(y-$\sqrt{3}$)2=1相切,则此双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用系统抽样方法从编号为1,2,3,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,则第5段中被抽中的学生编号为(  )
A.48B.62C.76D.90

查看答案和解析>>

同步练习册答案