精英家教网 > 高中数学 > 题目详情
已知
sinβ
cosβ
=4,则cosβ=
 
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由同角三角函数基本关系式可知,cos2β=
1
17
从而可求得cosβ=±
17
17
解答: 解:∵sin2β+cos2β=1
∴16cos2β+cos2β=1⇒cos2β=
1
17
⇒cosβ=±
17
17

故答案为:±
17
17
点评:本题主要考察了同角三角函数基本关系的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知对称中心为坐标原点的椭圆C1与抛物线C2:x2=4y有一个相同的焦点F1,直线l:y=2x+m与抛物线C2只有一个公共点.
(Ⅰ)求直线l的方程;
(Ⅱ)若椭圆C1经过直线l上的点P,当椭圆C1的长轴长取最小值时,求椭圆C1的方程及点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算:
.
ab
cd
.
=ad-bc,若数列{an}满足
.
a1
1
2
21
.
=1且
.
33
anan+1
.
=12(n∈N*),则a1=
 
,数列{an}的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题有
 
(写出所有真命题的序号)
(1)在△ABC中,“A>B”是“sinA>sinB”的充要条件;
(2)点(
π
8
,0)为函数f(x)=tan(2x+
π
4
)的一个对称中心;
(3)若|
a
|=1,|
b
|=2,向量
a
与向量
b
的夹角为120°,则
b
在向量
a
上的投影为1;
(4)?a>0,函数f(x)=ln2x+lnx-a有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R,当直线l被圆C截得的弦长最短时的m的值是(  )
A、-
3
4
B、-
1
3
C、-
4
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在钝角三角形ABC中,a=1,b=2,则最大边c的取值范围是(  )
A、(
3
,3)
B、(
5
,3)
C、(2,3)
D、(
6
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是一问题的程序框图,输出的结果是1716,则设定循环控制条件(整数)是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2
x2-2x+1
-3
x2-6x+9
(x∈R)

(1)画出函数f(x)的图象;
(2)利用函数的图象求不等式f(x)≥2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题有
 
.(填所有正确的序号)
(1)命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
(2)若f(x)=ax2+2x+1只有一个零点,则a=1;
(3)命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”;
(4)对于任意实数x,有f(-x)=f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时,f′(x)>g′(x);
(5)在△ABC中,“A>45°”是“sinA>
2
2
”的充要条件.

查看答案和解析>>

同步练习册答案