精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥的底面是梯形,且, 平面中点,

)求证: 平面

)若,求直线与平面所成角的大小.

【答案】(I)证明见解析;(II

【解析】试题分析:(I)取的中点,连结,证得,从而证得平面,根据平行四边形的性质,得,即可证明平面;(II)分别以的方向为轴的正方向,建立空间直角坐标系,求解出平面和向量,即可利用向量所成的角,得到直线与平面所成角的大小.

试题解析:()证明:取的中点,连结,如图所示.

因为,所以

因为平面平面

所以.又因为

所以平面

因为点中点,所以,且

又因为,且,所以,且

所以四边形为平行四边形,所以,所以平面

)解:设点OG分别为ADBC的中点,连结,则

因为平面平面,所以,所以

因为,由()知, 又因为

所以,所以

所以为正三角形,所以

因为平面平面

所以

又因为,所以平面

两两垂直,可以点O为原点,分别以的方向为轴的正方向,

建立空间直角坐标系,如图所示.

所以

设平面的法向量

所以,则

与平面所成的角为,则

因为,所以,所以与平面所成角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直角中,∠,D、E分别是AB、BC边的中点,沿DE将折起至,且∠.

(Ⅰ)求四棱锥F-ADEC的体积;

(Ⅱ)求证:平面ADF⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.

(1)求直方图中a的值及甲班学生每天平均学习时间在区间(10,12]的人数;
(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中其中真命题个数是(  )

为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k40

线性回归直线 恒过样本点的中心

随机变量ξ服从正态分布N2σ2)(σ0),若在(﹣1)内取值的概率为0.1,则在(23)内的概率为0.4

若事件满足关系,则事件互斥.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,∠PAQ是村里一个小湖的一角,其中∠PAQ=60°.为了给村民营造丰富的休闲环境,村委会决定在直线湖岸AP与AQ上分别建观光长廊AB与AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价预算为12万元(恰好都用完);同时,在线段BC上靠近点B的三等分点D处建一个表演舞台,并建水上通道AD(表演舞台的大小忽略不计),水上通道的造价是600元/米.

(1)若规划宽长廊AB与窄长廊AC的长度相等,则水上通道AD的总造价需多少万元?
(2)如何设计才能使得水上通道AD的总造价最低?最低总造价是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系已知椭圆的左焦点为离心率为过点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)设点分别是椭圆的左、右顶点若过点的直线与椭圆相交于不同两点

求证:

面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数f'(x)满足2f(x)+xf′(x)>x2(x∈R),则对x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函数f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的单调区间;
(3)若a=﹣2,正实数x1 , x2满足f(x1)+f(x2)+x1x2=0,证明x1+x2

查看答案和解析>>

同步练习册答案