精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+bx2+cx+2.
(1)若f(x)在x=1时,有极值-1,求b、c的值;
(2)当b为非零实数时,f(x)是否存在与直线(b2-c)x+y+1=0平行的切线,如果存在,求出切线的方程,如果不存在,说明理由;
(3)设函数f(x)的导函数为f′(x),记函数|f′(x)|(-1≤x≤1)的最大值为M,求证:M≥数学公式

解:(1)求导函数,可得f′(x)=3x2+2bx+c
∵f(x)在x=1时,有极值-1,
∴f′(1)=0,f(1)=-1
∴3+2b+c=0,1+b+c+2=-1
∴b=1,c=-5;…(3分)
(2)假设f(x)图象在x=t处的切线与直线(b2-c)x+y+1=0平行,
∵f′(t)=3t2+2bt+c,直线(b2-c)x+y+1=0的斜率为c-b2
∴3t2+2bt+c=c-b2
∴3t2+2bt+b2=0
∴△=4b2-12b2=-8b2
又∵b≠0,∴△<0.
从而3t2+2bt+b2=0无解,因此不存在t,使f′(t)=c-b2
故f(x)图象不存在与直线(b2-c)x+y+1=0平行的切线.…(8分)
(3)∵|f′(x)|=|
①若|-|>1,即b>3或b<-3时,M应为f′(-1)与f′(1)中最大的一个,
∴2M≥|f′(-1)|+|f′(1)|≥|f′(-1)-f′(1)|≥|4b|>12
∴M>6>…(10分)
②若-3≤b≤0时,2M≥|f′(-1)|+|f′(-)|≥|f′(-1)-f′(-)|=|(b-3)2|≥3,
∴M≥…(12分)
③若0<b≤3时,2M≥|f′(1)|+|f′(-)|≥|f′(1)-f′(-)|=|(b+3)2|>3,
∴M>
综上,M≥…(14分)
分析:(1)求导函数,利用f(x)在x=1时,有极值-1,建立方程,由此可求b、c的值;
(2)假设f(x)图象在x=t处的切线与直线(b2-c)x+y+1=0平行,从而f′(t)=c-b2,利用方程△<0,可得结论;
(3)|f′(x)|=|,分类讨论:①若|-|>1,即b>3或b<-3时,M应为f′(-1)与f′(1)中最大的一个;②若-3≤b≤0时,2M≥|f′(-1)|+|f′(-)|;③若0<b≤3时,2M≥|f′(1)|+|f′(-)|,由此可得结论.
点评:本题考查导数知识的运用,考查导数的几何意义,考查不等式的证明,考查分类讨论的数学思想,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案