精英家教网 > 高中数学 > 题目详情
函数f(x)=ax2+x-1+3a(a∈R)在区间[-1,1]上有零点,求实数a的取值范围.
考点:函数的零点
专题:函数的性质及应用
分析:当a=0时,f(x)=x-1满足条件;当a≠0时,函数f(x)在区间[-1,1]上有零点分为三种情况:①方程f(x)=0在区间[-1,1]上有重根,②若函数y=f(x)在区间[-1,1]上只有一个零点,但不是f(x)=0的重根,③若函数y=f(x)在区间[-1,1]上有两个零点,分类讨论求出满足条件的a的范围后,综合讨论结果,可得答案.
解答: 解:当a=0时,f(x)=x-1,令f(x)=0,得x=1,是区间[-1,1]上的零点.
当a≠0时,函数f(x)在区间[-1,1]上有零点分为三种情况:
①方程f(x)=0在区间[-1,1]上有重根,
令△=1-4a(-1+3a)=0,解得a=-
1
6
a=
1
2

a=-
1
6
时,令f(x)=0,得x=3,不是区间[-1,1]上的零点.
a=
1
2
时,令f(x)=0,得x=-1,是区间[-1,1]上的零点.
②若函数y=f(x)在区间[-1,1]上只有一个零点,但不是f(x)=0的重根,
令f(1)f(-1)=4a(4a-2)≤0,解得0<a≤
1
2

③若函数y=f(x)在区间[-1,1]上有两个零点,
a>0
△=-12a2+4a+1>0
-1<-
1
2a
<1
f(1)≥0
f(-1)≥0.
a<0
△=-12a2+4a+1>0
-1<-
1
2a
<1
f(1)≤0
f(-1)≤0.

解得a∈∅.
综上可知,实数a的取值范围为[0,
1
2
]
点评:本题考查二次函数与方程之间的关系,二次函数在给定区间上的零点问题,要注意函数图象与x轴相切的情况,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式log
1
3
(-x)>-x-1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2
1
(
1
x
+
1
x2
+
1
x3
)dx
=(  )
A、ln 2+
7
8
B、ln 2-
7
2
C、ln 2-
5
8
D、ln 2-
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:2log32-2log3
32
9

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=f(x)的导函数的图象如图所示,给出下列判断:
①函数y=f(x)在区间(-3,-
1
2
)
内单调递增;
②函数y=f(x)在区间(-
1
2
,3)
内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x=-
1
2
时,函数y=f(x)有极大值.则上述判断中正确的是(  )
A、①②B、②③C、③④⑤D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(2,0),B(4,2),若|
AB
|=2|
AC
|,则点C坐标为(  )
A、(1,-1)
B、(1,-1)或(5,-1)
C、(1,-1)或(3,1)
D、无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明:函数y=x3+x是R上的增函数;
(2)讨论函数f(x)=
a+x
x
(a>0)在定义域上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=
f(x)
x
在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x+
2
x
+alnx(a∈R)
(1)判断f(x)在(0,1]上是否是“非完美增函数”;
(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
mx2+6mx+m+8
的定义域为R,求实数m的取值范围.

查看答案和解析>>

同步练习册答案