分析 求出AD,BD,利用平行四边形对角线的平方的和等于四条边的平方和,可得结论.
解答 解:∵△ABC中,AB=AC=1,cos∠BAC=$\frac{1}{3}$,
∴BC=$\sqrt{1+1-2×1×1×\frac{1}{3}}$=$\frac{2\sqrt{3}}{3}$,
∵DC=2BD,
∴DC=$\frac{4\sqrt{3}}{9}$,BD=$\frac{2\sqrt{3}}{9}$
∵$\frac{1}{sinC}=\frac{\frac{2\sqrt{3}}{3}}{\frac{2\sqrt{2}}{3}}$,
∴sinC=$\frac{\sqrt{6}}{3}$,
∴cosC=$\frac{\sqrt{3}}{3}$,
∴AD2=1+$\frac{48}{81}$-2×1×$\frac{4\sqrt{3}}{9}$×$\frac{\sqrt{3}}{3}$=$\frac{57}{81}$,
∴2[1+($\frac{2\sqrt{3}}{9}$)2]=$\frac{57}{81}$+(2BE)2,
∴BE=$\frac{\sqrt{129}}{18}$.
故答案为:$\frac{\sqrt{129}}{18}$.
点评 本题考查正弦定理、余弦定理的运用,考查学生的计算能力,利用平行四边形对角线的平方的和等于四条边的平方和是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | -2 | ||
C. | |$\overrightarrow{AB}$|cosA | D. | 与菱形的边长有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
产品数量x(件) | 6 | 10 | 20 |
成本合计y(元) | 1040 | 1600 | 3700 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com