精英家教网 > 高中数学 > 题目详情

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

【答案】(1);(2).

【解析】

(1)根据等比数列的性质得到642,进而求出公比,得到数列{an}的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可.

(1)设等比数列{an}的公比为q.

由等比数列的性质得a4a5=128,又=2,所以=64.

所以公比

所以数列{an}的通项公式为an=a2qn2=2×2n2=2n1

设等差数列{}的公差为d.

由题意得,公差

所以等差数列{}的通项公式为

所以数列{bn}的通项公式为(n=1,2,…).

(2)设数列{bn}的前n项和为Tn

由(1)知,(n=1,2,…).

记数列{}的前n项和为A,数列{2n2}的前n项和为B,则

所以数列{bn}的前n项和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:

1)共有多少种方法?

2)若每个盒子不空,共有多少种不同的方法?

3)恰有一个盒子不放球,共有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,若是正整数,且,…,则称为“绝对差数列”.

1)举出一个前5项不为零的“绝对差数列”(只要求写出前10项);

2)若“绝对差数列”中,,数列满足,…,分别判断当时,的极限是否存在?如果存在,求出其极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知曲线C的极坐标方程为,且直线l经过曲线C的左焦点F.

(1)求直线l的普通方程;

(2)设曲线C的内接矩形的周长为L,求L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O为坐标原点,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,离心率为,点I,J分别是椭圆C的右顶点、上顶点,IOJ的边IJ上的中线长为

(1)求椭圆C的标准方程;

(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售某种活海鲜,根据以往的销售情况,按日需量(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为元.

(I)求关于的函数关系式;

(II)结合直方图估计利润不小于800元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:若对任意的x(0,2]都成立,则[0,2]上是增函数,下列函数中能说明命题p为假命题的有( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

若曲线处的切线斜率为-2,求该切线的方程

求函数上的最小值.

查看答案和解析>>

同步练习册答案