精英家教网 > 高中数学 > 题目详情

【题目】已知如图1直角三角形ACB中,,点的中点,,将沿折起,使面,如图2.

1)求证:

2)求二面角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)取的中点,连,利用勾股定理、面面垂直和线面垂直性质可分别证得,利用线面垂直判定定理可知,由线面垂直性质得到结论;

2)以为原点可建立起空间直角坐标系,利用二面角的向量求法可求得结果.

1)在图中,取的中点,连.

在直角中,

又点的中点,,有

得:

.

沿折起,使面

由点的中点,在等边中,,面

,又

平面

.

2)以为原点,分别以,过点且垂直于平面的直线为轴建立如下图所示空间直角坐标系:

在面中,设其一个法向量

,令,则

在面中,设其一个法向量

,令,则

二面角为锐二面角,二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20个两两不同的正整数且集合中有201个不同的元素.求集合中不同元素个数的最小可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处的切线方程为.

1)求函数的解析式;

2)若对任意,不等式恒成立,求正整数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是的导函数的图象,对于下列四个判断,其中正确的判断是( .

A.上是增函数;

B.时,取得极小值;

C.上是增函数、在上是减函数;

D.时,取得极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业产值在2008年~2017年的年增量(即当年产值比前一年产值增加的量)统计图如图所示(单位:万元),下列说法正确的是( )

A. 2009年产值比2008年产值少

B. 从2011年到2015年,产值年增量逐年减少

C. 产值年增量的增量最大的是2017年

D. 2016年的产值年增长率可能比2012年的产值年增长率低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:

(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;

(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?

优质品

非优质品

合计

合计

(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;

(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求的单调区间;

2)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

同步练习册答案