精英家教网 > 高中数学 > 题目详情

设函数图象的一条对称轴是直线

;

求函数的单调增区间;

证明直线与函数的图象不相切.

【小题1】;

【小题2】;

【小题3】证明略;


解析:

【小题1】是函数的图象的一条对称轴, ,

【小题2】由(1)知, 由题意得

,

函数的单调增区间为.

【小题3】证明:,所以曲线的切线斜率取值范围为[-2,2],而直线的斜率为,所以直线与函数的图象不相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且对?x∈R都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:直线x=1是函数f(x)的图象的一条对称轴;
(2)当x=[1,5]时,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=sin(2x+φ)(-π<φ<0),f(x)图象的一条对称轴是x=
π8

(1)求φ的值;
(2)证明:对任意实数c,直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x
(Ⅰ)若函数g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,求实数a的值;
(Ⅱ)是否存在实数a,对任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x) 是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=-f(x),已知当x∈[0,1]时,f(x)=3x.则
①2是f(x)的周期;        
②函数f(x)的最大值为1,最小值为0;
③函数f(x)在(2,3)上是增函数;    
④直线x=2是函数f(x)图象的一条对称轴.
其中所有正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是f(x)的导函数.
(1)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(2)设直线3x+y+1=0是函数y=f(x)图象的一条切线,求函数y=f(x)的单调区间.

查看答案和解析>>

同步练习册答案