精英家教网 > 高中数学 > 题目详情
用4种不同的颜色为一个固定位置的正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法数是(  )
A.24B.48C.72D.96
涂法可分两类:用3种颜色 和 用4种颜色
用三种颜色先分步:4种颜色中选3种N=4
每相对的2个面颜色相同
先涂1个面3种情况,涂对面1种情况
涂邻面2种情况涂邻面的对面
涂剩下的2个面1种
此步情况数N=4×3×2=24
当使用四种颜色
6个面 4个颜色
相当于用3种颜色涂完之后把其中一面颜色
换成剩下的那个颜色
N=24×3=72
∴总情况数N=24+72=96
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有(  )
A.12种B.18种C.24种D.96种

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把大小相同的3个红球,4个白球,2个黄球排成一排,则不同的排法种数有(  )
A.630B.1260C.60D.288

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用0,1,2,3,4,5,6组成7位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的7位数的个数是(  )
A.56B.48C.72D.40

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.
(1)共有多少种放法?(用数字作答)
(2)恰有一个盒不放球,有多少种放法?(用数字作答)
(3)恰有两个盒不放球,有多少种方法?(用数字作答)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

现给如图所示的4个区域涂色,要求相邻区域不得使用同一颜色,共有3种颜色可供选择,则不同的涂色方法共有(  )
A.4种B.6种C.8种D.12种

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲、乙不相邻;
(2)甲、乙之间间隔两人;
(3)甲不站左端,乙不站右端.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在10名演员中,5人能歌,8人善舞,从中选出5人,使这5人能演出一个由1人独唱4人伴舞的节目,共有几种选法?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线x=t、y=x将圆x2+y2=4分成若干块,现用5种不同的颜色给这若干块涂色,且共边的颜色不同,每块只涂一色,共有260种涂法,则实数t的取值范围是______.

查看答案和解析>>

同步练习册答案