精英家教网 > 高中数学 > 题目详情
20.设集合M={(x,y)|F(x,y)=0}为平面直角坐标系xoy内的点集,若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,则称点集M满足性质P.
给出下列四个点集:
①R={(x,y)|sinx-y+1=0}
②S={(x,y)|lnx-y=0}
③T={(x,y)|x2+y2-1=0}
④W={(x,y)|xy-1=0}
其中所有满足性质 P 的点集的序号是③④.

分析 分析性质P的含义,说明数量积小于0,向量的夹角是钝角,推出结果即可.

解答 解:对于①,R={(x,y)|sinx-y+1=0};y=sinx+1,定义域是R,对于任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2<0,①不满足点集M满足性质P.
对于②,S={(x,y)|lnx-y=0};y=lnx的定义域{x|x>0},对于任意(x1,y1)∈M,不妨取(1,0),不存在(x2,y2)∈M,使得x1x2+y1y2<0,②不满足点集M满足性质P.
对于③,T={(x,y)|x2+y2-1=0}.图形是圆,对于任意(x1,y1)∈M,存在(x2,y2)∈M,x2与x1符号相反,即可使得x1x2+y1y2<0,③满足点集M满足性质P.
对于④,W={(x,y)|xy-1=0}.图形是双曲线,对于任意(x1,y1)∈M,存在(x2,y2)∈M,x2与x1符号相反,即可使得x1x2+y1y2<0,④满足点集M满足性质P.
正确判断为③④.
故答案为:③④.

点评 本题考查了新定义即函数满足的某种数量积性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线l1经过不同两点A(3,a)、B(a-2,3),直线l2经过不同两点A(3,a)、C(6,5),且l1⊥l2,则实数a的值是(  )
A.0B.5C.-5D.0或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)是定义在(0,+∞),对一切x,y>0,满足f(xy)=f(x)+f(y),且当x>1时,f(x)>0
(1)证明:f(x)在(0,+∞)是增函数;
(2)若f(2)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2cos2x+sin2x+a(a∈R).
(1)求函数f(x)的单调增区间;
(2)当x∈[0,$\frac{π}{6}$]时,f(x)的最大值为2+$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过双曲线上任一点M作平行于实轴的直线,与渐近线交于P、Q两点,则|MP|•|MQ|为定值,其值为(  )
A.a2B.b2C.c2D.ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),则双曲线的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,则m的取值范围是(  )
A.-4≤m≤4B.-4<m<4且m≠0C.m>4或m<-4D.0<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=x3-3x2-9x+5的极值情况是(  )
A.在x=-1处取得极大值,但没有最小值
B.在x=3处取得极小值,但没有最大值
C.在x=-1处取得极大值,在x=3处取得极小值
D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα是关于x的方程2x2-x-1=0的一个实根,且α是第三象限角.
(1)求$\frac{2sinα-cosα}{sinα+cosα}$的值;
(2)求cosα+sinα的值.

查看答案和解析>>

同步练习册答案